資料結構
HW 1
Due 11/7/01

1. Write the first few lines of this function so that it uses the assert facility to check its precondition: (10%)
 void exam(int i)

 // Precondition: i is not equal to 42.

2. Write the simplest big-O expression to describe the number of operations required for the following algorithm: (10%)
 for (i = 1; i < N; ++i)

 {

 ...statements that require exactly i operations...

 }
3. Consider the following program that determines the minimum value in an under unordered array A[1..n]. (20%)

min := 1;
for i := 1 to n do
 if A[i] < min then

 min := A[i];

Consider the last statement (min := A[i];)
A. What is the maximum number of times it is executed. (5%)

B. What is the minimum number of times it is executed. (5%)

C. What is the average number of times it is executed, assuming all numbers in A are randomly drawn from the interval [0, 1]. (10%)

4. Here is a small class definition: (16%)
 class small

 {

 public:

 small();

 void k() const;

 void h(int i);

 friend f(Small z);

 private:

 int size;

 };

Suppose that x and y are both small objects. Write the word "legal" or "illegal" in each location of this table to indicate whether the indicated statement is legal or illegal in these locations:

	Statement
	In a main program
	In the const member function k
	In the friend function f

	x = y;
	.
	.
	.

	x.size = y.size;
	.
	.
	.

	x.size = 3;
	.
	.
	.

	x.h(42);
	.
	.
	.

5. Draw a picture of memory after these statements: (15%)
 int i = 42;

 int k = 80;

 int* p1;

 int* p2;

 p1 = &i;

 p2 = &k;

6. Compare the worst-case big-O time analysis for these two functions: The insert function for the bag that is implemented using a fixed-sized array, and the insert function for the bag that is implemented using a linked list. (14%)

7. Consider the function list_insert(node* previous_ptr, const node::value_type& entry) listed in page 229 of the textbook. If we modify it to the following, what will be the problems? Please illustrate by drawing a picture of memory change. (15%)

 list_insert(node* previous_ptr, const node::value_type& entry)

{

node *insert_ptr = new node;

insert_ptr->set_data(entry);

previous_ptr->set_link(insert_ptr);

insert_ptr->set_link(previous_ptr->link());

}

