Bl PR

E«”l‘“[?—‘l S ‘r'él
SAEES (1Y ﬁz;tgzggbltg) g

it (I SRR

= B 5
&' = A
F~l = AT SlfrFy

9/19/2002

" © Copyrights 2002, All Rights Reserved

—-

<_

(

User i pApplications fi = >

» Overview(Chapter 1 and 2)

) What is Database?

A database represents some aspect of the real world, called the mini-world.
Changes to the mini-world are reflected in the database.

The data in a database is logically coherent.

A database has an intended group of users and some preconceived
applications.

e PRIE

R e wéwmuﬁ PRI R RV

#I’Ffl FRIPT - P
%%“%[bﬂ#@WW%ﬁo

) What is a DBMS (DataBase Management
System)?

Application

Application |g———p{ DBMS |«—»| gD

Application

TRl AR R S A

[| Deﬁne a Database : @VPHe PR CFE ! F'Jﬁtb%ﬂ?f“ (H&iﬁw{v[jﬂﬁ

B Populate or constructing a Database : le‘j TR 5 '—fjf &3 ZI%FE' N é
i * ¥R -

B Manipulate a Database @ &2V ~ g‘,;;ﬁ! S RIERE S R (PR -

See Textbook's Figure 1.1: a simplified database system environment.

—) What makes the database approach different from

o
DEMS
\\\\

3
Application —— r\l

the file-processing approach?

Database Approach

/ Application 1

Application 2

File Frocessing Approach

See here for a graphical representation.

EﬁH 1) 73" Data (vF]) #1 Meta Data (ZFEAY | 1EAR]EYR] @ ~UiliRL"]
PJZ#%%E ;[FIF'JF?“?D[%’T;?; ZVpUEYR|) » Meta Data ~ PLI catalog.

A=Vl PR (program-data independence) : =R jﬁ ?F f lesz’Eﬂ Y

ZEETEH[FEZN o The structure of data files is stored in the DBMS catalog

separately from the access programs.

The DBMS supports multiple views of the data. The data perceived by the

users may be real or derived. Views also ease the job of security enforcement.

L R SRR

Transaction processing : Data can be shared and also updated in a controlled

manner so as to ensure that concurrent transactions operate correctly. (e 7F|

> STE R S R BRI

(PY) Who Play in The Database Environment?

The DBA (database administrator): ﬁ EYH’TE ﬁf{’{l |2[§%|TF eHp EFU
P ﬁa%f or Aay S AN

The database designer/system analyst: 4—’?;?%[3[‘3 VR TR A

The system analyst/programmer: 'JE5i%F fi Bl ™ ?{33 T 1“5{ 73T
= R P

Sophisticated users: {fi™ | =R T £} J%ﬁ EEU;J[E, Y EWH;JT?

End users/Naive users: IEI“ | R RS f@ EEIJF‘/EI%Q?E}H

() When You May not Use a DBMS?
151 5 ST (501 Web log) -
o ik fw lwﬁu (RIS 7

) ?Hv ?

e L‘{E';I?@ﬁ;\’—\[%

Afk) o

™ T v ZVESzhgs (IO T 3@ RT

(#+) DBMS Arch1tecture and Data Independence

iz

EMND USERS gi’

BUE | e R T |
external/conceptual \\ ///
mapping /

EE\?E(I:_E i COMNCEPTUAL SCHEMA

conceptual/internal mapping

L'EL%T_NAL INTERMNAL SCHEMA,

68%

STORED DATABASE

Fiuunr 2.2 The three-schema architecture.

See here for a grpahical representation.

The three-schema architecture

Schema type

Meaning

Target

external schema

¥[S0~ user group T‘ﬁ 3| Application
Fafol M [Z[PE PRI - & programmer
ErfyEe 1 e

conceptual
schema

I’T N B)Lﬁ’ﬂ_,

}“F”l TEErRIE S 1 £ IDBA
Fy s Fjrlu ~ BRI Fuﬁrg

Physical schema

] -

ID : 50~53 bytes
NAME:5~10 bytes

ek Physical DBMS designer
storage structure

1.The description of a database is called the database schema.

2.The internal schema describes the physical storage structure of the database. It
is seen by the DBMS designers.

3.The conceptual schema hides the details of the physical storage structures when
describing entities in the database. It is seen by the DBA.

4.The external schema describes the part of the database in which a particular user
group is interested and hides the rest. It is seen by application programmers.

5. Chonceptual and External [4{[t schema fi {ji*| ﬁ[[ﬂ PRI (R TJ r‘%"?
=)

Data Independence

LEWRPE @ 5= gt schema [150~ ' schema d57aE 1 /“\Elﬁﬁa'ﬁ@iﬂ =
— J¢t IV schema -

2. Logical data independence: The change of the conceptual schema does not
change external schemas or application programs.

3. Physical data independence:The change of the internal schema without having
to change the conceptual (or external) schemas.

(+) Database Language

B L Pt = S I#[F IF:I:A "35174 ﬁiﬂ‘&«n[[
® Storage definition language (EDLﬂ7 ol f?,“,‘l» Juacy internal schema °
® Data definition language (DDL): DDL il 5% conceptual schema »
® View definition language (VDL) : * I#VDE HF user views ©
“’f I ng data manlpulatlon language(DML) : ﬁﬂrﬁ[ﬁ‘l '5‘L 5‘7 :! %7 TR
@ 5]~ PP B SR HDRI P o
Fl[ﬁﬂ‘gjﬁif\fgﬂ =UE) ,JF*(/[U‘%F' FEFCER RS G- H*Lii . 1 DBMS £ V|
ﬂf?fi % [EI FI [*‘%&DDL it EW‘?H?[[TV EW‘?H lﬁilﬁcf— ﬁ;ﬁ_} DML}H BT
[ﬁ‘{ JF:_I_J“%FI % =
E EH‘* ’gl ﬁ(DBMSS)ﬁﬁ FRHE | F[LJE_F[QHEL DDL,VDL » DML ﬂf[lﬁl Ho
DM S E ?’xﬁfl Fz,lifﬂﬂ”
Ahlgh -level or nonprocedural DML : p HI’S‘JF*.J*&& TR - A
AFE RG] SIS - ’”(set at-a- J[jlme) [IR
“ Eﬂj P i & Vi 1 (Query language)
2. A ower-level or procedural DML : 4y — JEAHZCEZ B - | - g
S H UL v [EselER (record-at-a-time) 0 FIF fJ‘“l SUDIE] e
T R ?ﬁ?[Fr[ﬂ EIJF' " DML EFFI IAF[jﬁf[[P nf[HPLllﬁdHOSt
language > ¥ty fA i DML HiF# £, Data sublanguage °
FI 'JF’?FIJJIEIF' FUETR| ’Elu[; SQL #E - EIJ?FTJ DDL, VDL, #1DML > =

Jt > SQL %7 Tii? “_%? E‘m{v[(= |16 b (transaction) i ffi =] o

_-EH

,_¢

(") The Database System Environment

® The DBMS component modules

See Figure.2.3 in the textbook for a graphical representation.

® The Database System Utilities(* *' [Hd=1)

B Loading : It is to load an existing data files—such as text files or sequential
files—into the database.

B Backup : It creates a backup copy of the database.

B File Reorganization(%% E1 jLﬂﬁj) : To reorganize a database file into a
different file organization to improve performance.

B Performance Monitoring(¥=[) © To monitors database usage and
provides statistics to the DBA, so as to decide whether or not to do the file

organization. (FARFevR I ERL A }]’W’E’iﬁl%)

(=) Classification of DBMSs(ef[/ifiv 7])
® [AFHHERA T LS ”J(Single user) v.s. “ZH|*1(Multi-user).
® [AYRIEIH VR ¢ AR IZ (Centrahzed) E 1 IKFII_?' I BIf
?“(Distributed):ﬁdf%jﬁ[i i f [}j}%&rﬂ’ v I F,;\ﬁ%ﬁ
® (ALVRIEIT T A.FE??}Z?“ (Relational): f&¥73id » b Idfj EVRTT
B.[&g=" (Hierarchical): fil #fgi |
CPii%F E’r'[f' =% (Object- Oriented):ﬁ?i??‘% f ‘ﬁfm Ji‘%']‘
TR S SR R SRR TR o R R
Hi(Object- relatlonal DBMSs).
° Wﬁfrﬁﬁhw %\Tfﬂpj
® [AH[E[E] 1.~ JEH[EE A}eneral purpose) v.s. Jfﬁ FEH 3% (Special purpose).

(4) DBMS &5 pl

® 1960’s: File sytems (COBOL)

® 1970: Hierarhical DBMS (IBM IMS)

® 1980: Relational DBMS for mainframes (IBM DB2)

® [985: Relational DBMS for workstations (Oracle, Sybase, Informix)

® 1990: Object-oriented DBMS (Gemstore, Objectstore)

® 1995: Personal DBMS (MS Access, Foxpro)

® 2000: DBMS with Object and OLAP features (SQL Server 7.0, Oracle
8)

® 2002: XML databases

® [MSDBMS &LFRlfr [%2> =5 ['J[]"EJ%EE'J??.

~ ~ ER Model (Chapter 3)

<_

) Introduction

}-{—J < ﬁr’?ﬁeﬁ“l*ﬁlf%’(”ﬁfluﬁiﬁl_L IS ”Jﬁﬁiji"”}ﬁé?ﬁélh_ﬁﬁ)3 ?ﬁg
(== ii;ﬁhﬁ' Peter Chen ${1If% » = €, : Entity Relationship
Model -

It is used as a high level conceptual data model(t&a. e R[5 E]).
See Figure 3.1 for the phase of database design.

(Z) The ER Concept

Entities - kLA H] FEIPY— ZFE i B o RN R AR gt L
|7 2V entities.

Attributes : — {i entity &7 %%+ (properties),y ¥ & — FE{EHTEL f
1 (attribute) -

Attribute values @ & — ¥ (R[5~ ’?s;rlh‘“ | s FE @ﬁﬂiﬁrli[}afﬂ &
) *[?IHE;[°

(el :}EL_JFETFL\,;‘JJ (composite) FYfHIE| (simple)
’Eﬂ’[&kf@%?ﬁ:&@ %fifi (multi-valued) FYH1fffi (single-valued) °

fEERFE (Derived attribute) : #EE R EAY fHLRLE IED P93 (stored related
attribute) EEM |

F{f(Null value) ¥ = 72 5 & ¢ A4 #I(Unknown) B. T I(N/A,
not applicable), C.# i[ifé?‘[¥ {fi (The existence of value unknown)

=) Grouping Entities

aﬂqamﬁ b £y EL DO (A
- ﬁ“ﬁf/[|2[§ i Entity Type)iacy Ve FUENE JT‘E' B (attributes) U gl {1 o

- i?hj it“if'ﬁ‘ﬁé' JRER Jf’ﬁ‘ﬁ%‘f” IRES F\[?ﬁﬂillé‘\fextensmn or warehouse
of the entity type.
i+ ERD(ER diagrams)[*| entity type fL* [~ [FHIP/H=47. - attribute fiLH |
— TIPS o
Key attributes of an entity type: 3 8¢ {4 B[FEfVS — it D fifi ' e — #a.
(e 4
i B A BIRERY key RLET 2 ([attribute — *—“'?Fﬁﬁifﬁﬂj » 3 attribute [

A EElE ARy I TR R ERY- [key attribute > SUESEE A EfE 7
— [Key attribute °
+ ERD(ER diagrams)[*| > &) {[df key attribute fLb* £ I[I— Hi6LA A o
Key attribute ﬁﬁﬁl L&A > 1 ”ET’E Entity type I extension 7 [ff°
I% P o T [fil entity fv key attribute ffiffi -~ £ EYE [IRpE- Y -
Domains ofattrlbutes CRPIEpo il) © S - e Apu5- L ?F[&
o R (- D -
 ERD(ER diagrams)[* [y f f DR B s (s s i Multivalued
attributes F' | <ZHffiElErF A o
® HAAIRY

(%)
0 O
EMPLOYEE —@

® EMPLOYEE#fL- [Entity Type, ¥l extension #ifil5F EMPLOYEE
E [?E‘JFE‘FHEA}'E J%\ JE/\[
® Name ¥ [* ﬁ”ﬁif b BT IfE(Composne attrlbute)
® Phone I’ FJ b multl-valued O SN RLIIT) S A A
)
® An entity type may have no key, in which case it is called a weak entity
type.
® i ﬁ%’ﬁ ol
ENTITY TYPE NAME: EMPLOYEE
ATTRIBUTES: Name, Ages, Salary
fel. (John Smith,55,80k) \
ENTITY SET: e2. (Fred Brown,40,30k)
(EXTENSION) e3. (Judy Clark,25,20k)

NG)

(PY) An exercise
o [AEGENT 32 5‘* TR Preliminary design of entity types:

1.

An entlty type DEPARTMENT with attributes Name, Number,
Locations, Manager, and ManagerStartDate. Locations is the

only multivalued attribute. We can specify that each of Name
and Number is a key attribute, because each was specified to be
unique.

An entity type PROJECT with attributes Name, Number, Location,
and ControllingDepartment. Each of Name and Number is a key
attribute.

An entity type EMPLOYEE with attributes Name, SSN (for social

security number), Sex, Address, Salary, BirthDate, Department,
and Supervisor. Both Name and Address may be composite
attributes; however, this was not specified in the requirements.
We must go back to the users to see if any of them will refer to the
individual components of Name-FirstName, Middlelnitial,
LastName-or of Address.

4. An entity type DEPENDENT with attributes Employee,
DependentName, Sex, BirthDate, and Relationship (to the
employee). ﬁ%if%l Figure 3.8

194 =% Figure 3.2 ER schema diagram for the COMPANY database °

(v) Relationships, Relationships Types, Roles, and

Structural Constraints

Relationship Types , Sets and Instances

A Relationship : A relationship (instance) is an association(%# 7}) on entities.

A Relationship Type : A relationship type on n entity types (?GEIIGS a set of

relationships among # entities.

In ERD relationship types are displayed as diamond-shaped boxes.

A Figure 3.9 & 3.10 > FiPFH— EXRE 7PV instances °

Degree of a relationship type : It is the number of participating entity types.
(B R (R TR BTG)

A relationship type of degree 2 is called binary relationship type (= 7 {7

EIfi2) , A relationship type of degree 3 is called ternary relationship type (=

7B EEIE)

If the same entity type participates more then once in a relationship type, it

may play a different role for each participation. In this case, role name can

be attached. Such relationship types are called recursive relationships. (%

HF A Figure 3.11)

Structural Constraints on Relationship types

Cardinality Ratio(FLE7t™) It specifies the number of relationships (instance)

that an entity can participate.

For binary relationship types, there are three cases:

u 1:1 — See Figure 3.12

u I:N — See Figure 3.9

[] M:N— See Figure 3.13

Participation Constraints -

B Total: The participation of an entity type in a relationship type is total if
every entity must participate in at least a relationship. (existence
dependency)

B Partial: If not total.

We will refer to the cardinality ratio and participation constrains, taken

together, as the structural constraints of a relationship type.

TR GERIE e e g (Figure 3.13) » FUBHE T 1:1 {ipd ™ /722
migrated to) [=— 3#[Y entity - 7 1IN ‘[?jﬂhlﬁk [%?UJN AV entity >
MEN R B SRS~ S entity » it (R
(min’max)ﬂ%?'ﬁ%v% A i HRFOHL 2R VR (min
max) HZV R A AHREAY entity type . structural constraint > where
O0<=min<=max. It means the participating entity must participate in at least
min and at most max relationship (instances) > min = 0 %= Sﬁﬂ (7} 2= > min
> 047 2 AR -
ORK FO 1
N _
1:1) (1>N)
ENPLIOYEE DEPARTMENT
M 1 1
(0-1) 1>1)
ANAGE
StartDate

PROJECT

IR 1 C5eEA Total » Hi76LA Partial

BT = Rl RERiA ﬁBF'FJ— ERlE A

Hours ¥t EMPLOYEE { PROJECT F-Hfi SUESSHHZE(R * v (75
fi 4T [BT relationship HEEE

FEl- EflE ~ i TR - LRI

(v) Weak Entity Types

- £ Entity type 12 F | key attribute » 7 EL 55 8¢ 4 |2 (Weak Entity Types)+
Weak Entity Type 1~ FERH 7 E[f= (#i £} identifying relationship type)
gé& b= @A ERE L (F8EL identifying entity type FiY owner entity type) »
T PR (RS 99 kL total participation constraint

S RITE Key 1 RLRLE owner entity i ey 7 215t -t
TR Ay g NPV B SR LD Partial key

¥, 75 [total participation ﬁﬂ rﬁl & F - W R RIS FIISBIPY driver
liscense and person ©

it ERD [» g (4 BIRE R [A0Y SAEG. ?%%Efi 75 [) Sl

-1

EMPLOYEE DEPENDENT

® BV key £ Name + SSN
® PN ARIREE K f'%Fj:E'JJFZ'ﬁ?“ %fifi (composite * multi-valued) fi%'g{% 2V
o CREEE I EfFIb?) -

Ex. Refine COMPANY database by taking relationships into account

1.

MANAGES, a 1:1 relationship type between EMPLOYEE and
DEPARTMENT. EMPLOYEE participation is partial. DEPARTMENT
participation is not clear from the requirements. We question the users,
who say that a department must have a manager at all times, which
implies total participation. The attribute StartDate is assigned to this
relationship type.

WORKS_FOR, a [:N relationship type between DEPARTMENT and
EMPLOYEE. Both participations are total.

. CONTROLS, a &N relationship type between DEPARTMENT and

PROJECT. The participation of PROJECT is total, whereas that of
DEPARTMENT is determined to be partial, after consultation with the
users.

SUPERVISION, a I:N relationship type between EMPLOYEE (in the
supervisor role) and EMPLOYEE (in the supervises role). Both
participations are determined to be partial, after the users indicate that not
every employee is a supervisor and not every employee has a supervisor.

. WORKS_ON, determined to be an M:N relationship type with attribute

Hours, after the users indicate that a project can have several employees
working on it. Both participations are determined to be total.

DEPENDENTS_OF, a I:N relationship type between EMPLOYEE and
DEPENDENT,which is also the identifying relationship for the weak entity
type DEPENDENT.The participation of EMPLOYEE is partial, whereas that

of DEPENDENT is total.

® For solutions, please refer to Figure 3.2 or 3.15.

(~+) Naming Conventions, and Design Issue

Proper Naming of Schema Constructs (#1f#f{fy €1 %)

® Entity type » Relationship type iV] {EE,IF‘ I F"J,EJ"EJ (uppercase letters)

Attribute fiY £ 81— (a3 A H (capitalized) » Role [F/ AR
=) (lowercase letters) ©

Il E

® Entity type fIV /7| £/5 - Relationship type [V £# " [Eh5H » Attribute iy
%Em [T Wﬁ
® i ERD Eﬂ (LRI * PR I G0 Aentity

relatlonshlp — B entity p Jjﬂ;rﬁ F;,[H,?‘EIF[J ’» E[' fﬁj frﬁ&ﬁ“fﬁ'ﬁ

i R B

® = HFL Figure 3.14 for a summary.

Rl

() Relationship Type of Degree Higher Than Two

o ternary binary + 1.

° %“%@ ﬁw%”@?’ﬁﬂﬁﬂ T [ORE RIS R 5 e

B RRIRH T > 4 (STUDENT, COURSE, TEXT-BOOK) i
= WP%[,,’ sHA o

o - I ORI PRI - A IO FRIE - S
(B[RRI pURYR 2HT = (7 FUE}*EJI THIFEATAS UEYF(Se
4.13,4.14, and example) °

Cab TEACH TAUGHT_DUERLNG CFFERED_DUELING
= M3 w= Db LB &E
i) ML3 i3
CFFEE3
= g8 LB

Example

| F‘Jlﬁ

Tu EJFTJ

e Figure

(I) Exercises

?%??— - Model a teaching system that includes the following entities :
1. DAPARTMENT
2. TEACHER
3. CLASS
4. STUDENT

IR = oD

b !
TEACHER @ DEPARTHENT

SIUDENT

[F‘Wm@ % 0 FIFF 1§ USER F_?fw ' J[L il p:j:j» P gt 'E' S
p Jg:—j\‘rjﬁhrl

R BEER. model - RS) SRS S O
) E‘J 4 [entity types: FE[] - Eﬁ?’é”ﬁ ﬁ%ﬁ;fﬁﬁ' ’ ”ﬁt)

® [T [attributes: [UBE > =) > (] o E I BERLIE- [

o Li]?;lévﬁ L?JE (ot attributes:)ff REARERT Ersf Tﬁ‘aqx o HE B qu%ﬁtyT
LR FIFHE&E»‘ J"’E}é%h Vidﬁ'ﬁféf“ o EL vl ~ FRBRRLE - fiye
el E”n“ﬁ attributes: ZFIF Y5 JE[F ETE TR BRLE - Y -
Jﬁjﬁ, E”n“ﬁ attributes: S5k > 5k o Ef[1E gFFiPE fiy e

- R ST SO

L Sl Eﬂﬁrl“ SERH D 2 F'ﬁﬁ%’*’— TR RS
Y Gk S iy A 1@_ Y 25 BRETES 0 T9E > Rk 1 Erzc #iy o
ﬁ%E'J ternary relationship P U“FJ’T%M

° ﬁ%@&l; F;E:jw » # 1 E E-R diagram o

ﬂ‘;ﬁ??} : f@r%fﬁ\’{%l? model — [FERZEF | ETVHIEE €7 725K w’};@?ﬁ?ﬁ BENCEN NI

ook

o = J/E-,I £l 4 {[entity types: ' E1 > éﬁl €78 ’fr 2AETH

o 41 EJ = lﬁ attributes: [RBE > 1 € I*HU Y ‘l*ﬁ:ﬂé‘ [o

o R Blanbutes: bR DA - 108 A
—~ AV o

° éﬁf&”%ﬂ = [attributes: & E”T'Eﬁ’rb’? 5@%'”*}5’? [IE o B E[i ETEHETF-}WD
@E%I“Fﬂﬂﬂé i -

® SLLTHIE T (i attributes: :SLETHIRRISE > F1HY o Ep[E €T HERIBRLE- AU -

-—MM%@WWWﬁwﬁM'@f’ﬁmwg

o STAUTEI [IR i B R T AR R

R

%[#" r‘ﬁj]T—J‘ » Z 1 E ER diagram e
Ans *
i SELETH
ﬁ’g;iﬁ ’rb”F EIL;;JE ’riﬁ”F
!
FIHEY > r BETERR AR _
B A AR [0l RO e e

ﬁ?“‘@%”?ﬁ”ﬁﬁ%mEﬁ%&ﬂ@ﬁﬁ*ﬁﬁﬁ@ﬂ’%&@ﬁﬁé

- ﬁﬁy BIpERR I RS o

* v FFJﬁﬁ‘Lu’Hﬁ[wuﬂ”%ﬁFH 1O BRLpE - 9 -

® - T JI*E"F o SEEESEEY o TR BRRLE Y e

o ﬁfﬁﬂ%fﬁﬁ fiy bﬁ' iR o B SRR > ﬁ@ﬁ'ﬂ% ARV Tl A e
F:&Eﬂjpuﬁm 0

ﬁ%@‘t"J TPl - i ERD -

B
1 Eb{fr 5 fe! Relationship Type? Eh{f "] Attribute <= FrE | iy
Relatlonshlp ?
%‘v: Fﬁ[u'ﬂﬁ"? ESRN }lﬁj’ﬁ Entltyf r"?}% i H B 7FE' |9 Attribute
Eﬁ«[pé FR
[A -
glﬂ Tl Weak Entity Type? i BT H"i’ﬁ% 5| Composite multi-valued
attrlbute Jo IV [t~ [Weak Entity Type ?

'FAT * ¥ Entity V[H]E| - Eﬁl[’,ﬁ; i+ > [[] Weak Entity Type i“#&anb it 5
AL IV o =9 > Weak Entity Type [i' ') %3 partial key FET}’
1 > 5 kL Composite multi-valued attribute 7 3 Z - Y o
3.~ {la Entity ' p' I'JEE 5 [[Entity Types ! ?

i B R B pe WW%sz Pyt Entity

Epigy e Eﬁiﬁqf—ﬁ IRE 2 [P [fh%i[ﬁ | (Object-Oriented) il 4. + EER Model
felg -

—

—

» Relational Model (Chapter 7)

Background about Relational Model (E}%?’fﬁ?“ﬁ?“)

It is introduced by Codd in 1970.

{t .}ES a solid theoretical foundation (%] ﬂ%ﬂiﬁ‘ﬁlﬁfﬁ[ﬁ?’ﬁﬁl@é’ U A
TR .

It is based on a simple and uniform data structure (ﬁE‘J%\F& T~ - Py
ﬂﬁ’tﬁ%f) .

It is also the most popular data model adopted by commercial DBMSs ([If]]
2) .

(—) Relational Model Concepts

Domains, Attributes, Tuples, and Relations

A database is a collection of relations (-~ [l Fkl— HEY Fi%?%%) .
Informally, a relation resembles a table, each row represents a collection of
related data values. These values can be interpreted as facts describing a
real-world entity or relationship.
In relational terminology, a row is called a tuple, a column header is called
an attribute, and the table is called a relation.
® Pl s

Relation — Table

Tuple — Row (Record)

Attribute — Column (Field)
A Relation schema R, denoted by R (A1,A2,...,An), is made up of a relation
name R and a list of attributes A1,A2,...,An. The degree of a relation is the
number of attributes of its relation schema.

- f[ﬁ‘%?’ﬁ%ﬁ?ﬁ % tuples iU & f&l (A relation is defined as a set of tuples)

Attributes
Relati 4_‘/

Al A2 - = An

Relation § Tuples

L5 Y domain £ A999999999 > Atomic value F - Eh— TIEE] 55 %]JEIQ

i ip -

A relation (or relation state, or relation instance) r of the relation schema

R(A1,A2,...,An),also denoted as r(R), is a set of n-tuples.

A tuple is a set of (<attribute>,<value>) pairs.

The meaning of attribute, extension, domain, null value in relational model is the

same as that in ER model.

Each attribute must be associated to a domain, which is a set of atomic values.

() gl A4 E HEE - (19)

A relation (instance) at a given time reflects only the valid tuples that represent a

particular state of the real world. See Figure 7.2 in page 199.

7+ ER Model [{% | Entity == Relationship » 7+ Relational Model ~J FI‘?«R 1=

FE P [E32 el 0T o Hi D £ Relations -

A database schema £ A set of relation schema

An example of a relation schema for a relation of degree 7 is the following :
STUDENT (Name, SSN, HomePhone, Address, OfficePhone, Age, GPA)

Characteristics of Relations (F%JE%%EJ’% %)

Tuples in a relation have no orger.

Ordering of values within a tuple (Ordering of attributes in a relation schema
definition) is NOT important. In other words, conceptually values in a tuple
have no order, but physically they do have an order.

Composite and multi-valued attributes are not allowed in relational model.

- K=" Relations #<=1- Entities V% YE] » |fijp)5 £ Relations #=- Relationships
AUl o BT) RE TR AR R [ﬁjﬁ—iﬁw] Relations <%=~ Entities #[!
Relationships ElfJ'Ef%l? °

(Z) Relational Model Constraints

Domain Constraints : The value of each attribute A must be an atomic value

from the domain dom(A) for that attribute. (=~ Ff{EYf 4 EfLE fififsh* |y

SF- i)

Key Constraints -

B By definition, no two tuples in a relation can have the same combination of
values for all their

u attributes.

B A superkey is a set of attributes (subset of attributes of a relation schema)
whose values are unique for each tuple. (F%RYIE~ fifif- FH attributes)

B A Kkey is a minimal superkey (i.e., no redundancy , still have the uniqueness
constraint hold).

B [n general, a relation schema may have more than one key. In this case, one
is chosen as the primary key, (7+ Relation schema H = El%ﬂ/ NE - TR
#5L) while others are called candidate keys or secondary keys.

B Key constraint is such that no two tuples have the same values on key
attributes.

Integrity Constraints (%&‘glﬁrﬂﬂfﬁﬂ) :

A relational database schema is a set of relation schema and a set of integrity

constraints. A relational database is a set of relations. (¥ Figure 7.5 and 7.6,

A 204 > 205 F1) o

Entity Integrity constraint states that no primary key value can be null.

Referential Integrity Constraint :

Informally, it says a tuple in one relation that refers to another relation must

refer to an existing tuple in that relation. (See Figure 7.7, 208 F1)

A set of attributes of R1 is called a foreign key if

B [ts domain is the same as the primary key of another relation schema R2,
and

B [ts value either occur as a value of the primary key of some tuple in R2 or
is null.

W A foreign key can refer to its own relation. (foreign key i’ =% %[%
£)) See Figure 7.7 for the graphical representation (SUPERSSN in
EMPLOYEE references to SSN also in EMPLOYEE).

B [t should be enforced automatically by the DBMSs, e.g., the deletion of a
department cannot occur before that of its employees.

Semantic (7} &i[IV) Integrity Constraints : Any other semantic relationships

between the values of attributes (in different tuples), e.g., salary of an employee

must not exceed that of his (her) manager.

(=) Update Operations on Relations

There are three types of update operations: insert, delete, and modify.

Whenever update operations are applied, no integrity constraints specified
should be violated. (1’ i@ﬁ%g{‘i&l@ﬁjﬂ)

Insert may violated all types of integrity constraints (}i’ H:ﬁ_ﬁ;ﬁ FEBEU %g[_ﬂiﬂ
ﬁj[] » 2B FA 209 [for examples). In case some integrity constraints is violated,
two options are available :

B Reject the insert.

B Correct the reason for rejection.

Delete may violate referential integrity constraints (i’ Hilﬁ_i’F”J‘éf:% AR T

fill; == H 54 210 1 for examples). Three options are available for the violation
of referential integrity constraints :

B Reject the deletion.

B Cascade the deletion. (T‘E‘Féﬁfﬁfg‘}%’i[= ﬁﬂﬁ'ﬂ%ﬁt)

B Modify the referencing attribute values. ([Sel%: % Z|[A% fif)
Modification may violate all types of integrity constraints. The issues are the
same as those in insert and delete. ([Ed¥= %ﬁéf@ﬁ[fﬁjﬁ? k=~ i tuple » IR
FJ3E 7~ [tuple)

(P4) Basic Relational Algebra Operation

It is a collection of operations that are used to manipulate entire relations. Each
operation takes relations as input, and output is also a relation.
Relational operations can be divided into two groups:
B Set operations: UNION > INTERSECTION > DIFFERENCE > CARTESIAN
(3£ pd) PRODUCT.
B New operations: SELECT > PROJECT » JOIN - aggregate functions (Ay
A Jﬁ:) .

SELECT operation (¢ ; sigma)

Select a subset of tuples in a relation that satisfy a selection condition: E.g., O
DNO=4(EMPLOYEE) -

O salary>25000+2000*year (EMPLOYEE).

® The general format is O <selection condition>(<relation name>), where selection is
a predicate (#7" r/) on the attribute values in the associated relation.

® SELECT operator is unary (U ET7w =R IIEED -A), i.e., itis applied to
single relation.

® [t is applied to each tuple indivisablly.

® The fraction of tuples selected by a selection condition is called "selectivity" (32
%) of the operation.

® SELECT operation is commutative (Zr#1{%) , i.e
O <condl> (0 <cond2> (R)) =0 <cond2> (O <cond1> (R)) .

PROJECT operation (77 ; pi)

® Select certain columns from the table and discard other columns, e.g.
77 LNAME, FNAME, sSALARY (EMPLOYEE)
® The general format is 77 <attribute list> (<relation name>) .
® Project operator implicitly removes ([IF97%#) any duplicate tuples.
® The result of the PROJECT operation has only the attributes specified in
<attribute list> and in the same order as they appear in the list.

Applying several relational operations to get desired results

® Scveral relational operations can be applied one after another to get desired
results, This expression is called relational algebra expression, e.g., 77 FNAME,
LNAME, SALARY (0 DNO=5 (EMPLOYEE)) .
® Or you can name the intermediate results -
DEPT5 EMPS < ¢ pNo=5 (EMPLOYEE)
RESULT < 77 FNAME, LNAME, sALARY (DEPT5 _EMPS) .

RENAME operation (o ; rho)

® To rename the attributes in a relation, we simply list the new attribute names in
parentheses :
TEMP < ¢ pNo=s (EMPLOYEE)
R (FIRSTNAME, LASTNAME, SALARY) < 7T FNAME, LNAME, SALARY
(DEPT5_EMPS) .
® General RENAME operation is denoted by :
0 s®1,B2,...Bn) (R) ! renames both the relation and its attributes.
0 s (R) : renames the relation only.
O 31,82,....Bn) (R) ! renames the attributes only.

Set Operations

® Set theoretic operations are binary operations. [S3Ei fI7% i §T]

B Union (U ; ,?E% ; RUS 3 Clif’iEPF/‘* T;Jt"”'b’zz’j’ﬁ/‘?ﬁ.fﬂ :}tﬂv ﬂ
PO i tples)

B Intersection (N & ; RNS; Wiy FE‘{PF/‘E‘K TJ EIJ tuples) »
Difference (— ; # & ; R—S; E[J? FE’PE’” FTF g ’”,FTFH
tuples) »

B Cartesian Product (XX ; & ; R X S; EIJ? T TJTW [tuples [y fiel
ik & VATE| tuples) .

® Note that two relations that U > 1 or — are applied to must have the same

type of tuples, which is called union compatibility (5 ﬁ 33;% [FRE TR
[F' BT I pugl = - ﬁlfltj‘ EHEE ﬁl[ﬂ U@ji@‘a) . See Figure 7.11 in
page 218 for an example

Both U and N satisfy commutativity(ZrgatE RUS=SUR and RN S=S
MR) and associativity (%% i Z1E 5 (RUS) UT=RU (SUT)>andRN (S
NT)=(RNS) NT)> 1fference (—) is not commutative.

The two relations that are applied to Cartesian Product (X) need not to be
union compatible.

k Attributes [Attributes k+[Attributes
n tuples m tuples mn tyuples

Suppose R and S have n tuples and m tuples respectively, R > S will have
n*m tuples, See Figure 7.12.

Cartesian Product followed by SELECT operator can be combined by a
special operator called JOIN.

JOIN operation ()

It is used to combine related tuples from two relations into single tuples. It
allows us to process relationships among relations.
The general format is R P<I <join condition> S, <join condition>(fie i 1)
AUt <fEFF>AND<{X{¥>AND... AND<{({}>)
Join condition is a conjunction of Ai © Bj > where Ai is an attribute of R >
Bj is an attribute of S>and© (theta)is one of the comparison operators {=,<,
=,>,=,#}. Ajoin operation with such a general join condition is called a
THETA join.
The most common JOIN is that with only equality comparison operator (=) .
This is called EQUIJOIN.
The result of an EQUIJOIN operation will contain two columns of the same
value.
Suppose R and S have # attributes and m attributes respectively, R > S will
have n+m attributes.
Another join operation is called NATURAL JOIN—denoted by * —is an
equijoin followed by the removal of redundant attribute. It needs the two join
attributes to have the same name ([F~gJ[%47 join attribute) .
The result of a JOIN will have between 0 and n*m tuples.
Join selectivity = (number of tuples in a join result) +(n*m)
1 F 45 IR RO £ 1A CARTATION PRODUCT — £t » <7
CROSS JOIN Fy CROSS PRODUCT » 5[:
EMPLOYEE DX trRuE DEPARTMENT = EMPLOYEE X

DEPARTMENT
Three-way join :

((PROJECT X pNum=DNUMBER DEPARTMENT) D<I MGRSSN=SSN
EMPLOYEE) -

Complete Set of Relational Algebra Operation

Define any relational algebra operation can be expressed as a sequence of
operations from this set.

® Forexample, {0 > 7T > U > —> X} is a complete relational operation set.
CH 9 S HELETR 2R A7 5 P IRE R 2 |- AR A
Ao fn - (ROS) = (RUSE — ((R—S) U (S—R))]-
®
A={x,y}
B={y, z}
AUB={x,y,z}
ANB={y}
A—B={x}
B—A={z}
(AUB)—(A—B)—(B—A)=(AMNB)
® A JOIN operation can be specified as a CARTESIAN PRODUCT followed
by a SELECT operation.
R DX <condition> S =g <condition> (R X S)
® A NATURAL JOIN can be specified as a CARTESIAN PRODUCT
preceded by RENAME and followed by SELECT and PROJECT operations.

Examples
QUERY1 : %34 230 17 208 [I Figure.7.7 (#5¢/17% 'Research’ #iif]
(VAR EY T g e)
EMPLOYEE (FNAME, MINIT, LNAME,..., ADDRESS,..., DNO)

DEPARTMENT (DNAME, DNUMB ...
|
“Research”
Ans. : RESEARCH_DEPT <~ 0 DNAME = "Research" (DEPARTMENT)
RESEARCH _EMPS<- (RESEARCH_DEPT P<I DNUMBER=DNO
EMPLOYEE)
RESULT < 77 ¥NaME,LNAME,ADDRESS (RESEARCH_EMPS)
QUERY2 : 2 H3 4 231 FI% 208 FI Figure7.7 (§5L1150 4% 'Stafford’ 1/ £5—
H ii’i“'“f‘/[JH'lE(rii’%‘ Y [fgf‘FJ?EﬁEBﬁfgf‘FJﬁifﬁlﬁl{ NEES: (R
PLOYEEC(...,LNAME,SSN,BDATE,ADDRESS,...,DNO)

DEPARTMENTY(...,DNUMBER,MGRSSN,...)

PROJECT(...,PNUMBER,PLOCATION,DNUM)

|
“Stafford”

Ans. © STAFORD PROJS<— 0 PLOCATION = "stafford" (PROJECT)
CONTR_DEPT<- (STAFORD_PROJS P> DNUM=DNUMBER
DEPARTMENT)
PROJ DEPT MGR<—(CONTR_DEPT P>< MGRSSN=ssN EMPLOYEE)
RESULT <— 7T PNUMBER, DNUM,LNAME, ADDRESS, BDATE
(PROJ DEPT MGR)

QUERYA : 2 #3 4 231 F17%2 208 1 Figure?.7 (It {Smith'e | (i 40
(B 3l e 22304 ED)

EMPLOYEE(...,LNAME,SSN,...)

“Smith”
WORKS ON(ESSN,PNO,HOURS)
DEPARTMENTY(....DNUMBER ,MGRSSN,...)
PROJECT(....PNUMBER,PLOCATION,DNUM)
= ¢ it smith directly works R F| fft~smith indirectly works (manages)

Ans. © SMITH (ESSN) < 77 ssN (0 LNAME="smith" (EMPLOYEE))
SMITH_WORKER PROJ<- 77 pno (WORKS ON % SMITH)
MGRS<— 77 LNAME, DNUMBER (EMPLOYEE P SSN = MGRSSN

DEPARTMENT)

SMITH _MANAGED DEPTS (DNUM) <— 7T DNUMBER (J LNAME =

"Smith" (MGRS))

SMITH_MGR _PROJS (PNO) < 7T PNUMBER
(SMITH_MANAGED DEPTS * PROJECT)
RESULT< (SMITH_WORKER PROJ U SMITH MGR PROJS)

The Division Operation

® _Example: Retrieve the names of employees who work on all the projects
that 'John smith' works on.
(NAMEID=PID) . (% HF % 225 [I Figure. 7.15)

Ans. : SMITH<— 0 FNAME = 'John' AND LNAME = "Smith" (EMPLOYEE)
SMITH_PNOS<- 77 PNO (WORKS ON <l 15y ssx SMITH)
SSN_PNOS<- 77 EsSN,PNO (WORKS ON)

SSNS (SSN) <— SSN_PNOS + SNITH PNOS

RESULT < 77 rNnaME, LNAME (SSNS sk EMPLOYEE)

® T=R (Z) =S (X),where Y=2—X > XcZ. (P& 1] %A g

#)

Ti<~7T vy (R)

T2<- 7T vy ((SXT1) —R)

T < T1—T2
B0 R(Y. X) S(X) T(Y) ("[PROJECTHR, S Vgl
Y T A D

yl, x1 x1 yl
yl, X2 + x2 — y2
yl, x3
y2, x1
y2, x2

y3, xlI

=3

R T < TI=T2 VT FR o R S Y
T1 TIXS TIXS—R T2 T

(

yl yl, xI y3 x2 y3 yl
y2 yl, x2 y2
y3 y2, xlI

y2, x2
y3, xlI
y3, x2

) Additional Relational Operations

Aggregate Functions and Grouping

NS

1=

So far the mathematical aggregate functions (Zr7, “J=) on collections of
values from the database can not be specified by relatlonal operations. The
aggregate functions include :
B SUM > AVERAGE - MAXIMUM > MINIMUM (s used for collection
of numeric values.
B COUNT (is used for counting tuples or values.
Sometimes you need the aggregate functions to be applied in the group basis,
e.g., find the average of each department. (73 |EiAf1E<)
General form : <grouping attributes> <function list>(<relation name>) (F
is pronounced "script F")
<grouping attributes> : a list of attributes of the <relation name>
<function list> : a list of (<function><attribute>) pairs
f * R (DNO,NUMBER OF EMPLOYEE, AVERAGE SAL) <— DNO&F COUNT SsN,
AVERAGE SALARY (EMPLOYEE) [ﬁj * (O R (DNO, NUMBER_OF EMPLOYEE, AVERAGE_SAL)
(DNOFF COUNT ssN, AVERAGE saLARY (EMPLOYEE))

R DNO NUMBER_OF_EMPLOYEE | AVERAGE_SAL
5 4 33250
3 31000
1 55000

I counT ss, AVERAGE saLARY (EMPLOYEE) & % iU table fiL
R(COUNT _SSN,AVERAGE SALARY)

COUNT_SSN AVERAGE_SALARY
8 35125
£| grouping attributes FJSF = %B?&E?ﬁ Bh— T o

® DNOFF COUNT ssN, AVERAGE saLARY (EMPLOYEE) [[[£% R
(DNO,COUNT SSN,AVERAGE SALARY)

DNO COUNT_SSN AVERAGE_SALARY
5 4 32500
3 31000
1 1 55000

Recursive Closure Operations
® Relational algebra operations generally cannot specify recursive closure.

CHLERIE D

® Example: Get the names of the employees who are directly or indirectly
supervised by James Borg.

® Relational operations cannot specify recursive queries because they lack of
looping mechanisms.

® See Figure 7.17 A two-level recursive query.

® LIS Borg El TPy P RESULTL » FJp =2kl EMPLOYEE El?'ﬁ#}t",
EON Eyu T B RESULT2.

BORG SSN < 77 SSN(0 FNAME = 'James' AND LNAME = "Borg"(EMPLOYEE))
SUPERVISION (SSN1, SSN2) <— 7 ssN, SUPERSSN (EMPLOYEE)
RESULT1 < 77 ssN1 (SUPERVISON P g, -sss BORG SSN)

RESULT2 (SSN) <— 77 ssN1 (SUPERVISON X! sSN2 = SSN RESULT1)
RESULT <RESULT2 U RESULTI

OUTER JOIN Operations
® HISEAYDH[EY inner join > inner join f [l AT ﬁciﬁfﬁﬁﬁ 77 e
® RAIS[YIOIN {2 AFHAI R 7 S HIfiY5 £ tuples- {1] OUTER JOIN
FIF ALY tuples.
® Example: Find a list of all employee names and also the name of the
departments they manage if they happen to manage a department. fii"|™ ¥[|
LEFT OUTER JOIN EJHF[J) —_
7T FNAME, LNAME, DNAME (EMPLOYEE < SSN=MGRSSN
DEPARTMENT)
® LEFT OUTER JOIN %= i@{?ﬁ?ﬁﬁfﬁ’?ﬂ tuples > RIGHT OUTER JOIN
(>) By IEE@&&W& | mﬂﬁ[es SFULLOUTERJOIN (M)
?ﬁﬁ'tji%{%%??ﬁﬁﬁ—l | tuples -
OUTER UNION Operations
- Fﬁ%iﬁ*ﬁ@ﬁ.\lﬁ I'£% STUDENT (Name, SSN, Department, Advisor) *
FACULTY (Name, SSN, Department, Rank) .
EIJ%%E% A F 1A
R (Name, SSN, Department, Advisor, Rank)
R rﬁ W Eq%%?’ﬁ%ﬁbﬁ% | tuples > STUDENT 1% tuples [Rank g% null -
FACULT f% tuples iy Advisor g% £% null » £ 5~ tuples Fh* I U?KJF%E?JE » Hl
Rank gt % Advisor ’:Eﬁ’l‘gktlﬁ f‘,f | EVRL

(7) Examples

1.

S04 34 231 FI QUERY3 * 208 I Figure7.7 » 205 FIvh|:
et VSO [1E= 2 E Sl AR]

EMPLOYEE (FNAME, MINIT, LNAME, §SN...., DNO)

WORKS ON (ESSN, PNO, HOURS)
5

PROJECT (PNAME, PNUMBER, PLOCATION, DNUM)

Ans.:
DEPT5 PROIJS (PNO) < 7 PNUMBER (0 DNUM=5 (PROJECT))
EMP PROJ (SSN, PNO) <- 7 ESsN,PNO (WORKS ON)
RESULT EMP_SSNS < EMP PROJ -+ DEPTS PROJS

T Ad B NULL)
RESULT <= 7 LNAME, FNAME (RESULT EMP_SSNS * EMPLOYEE)

(f=

2.8+ 231 F QUERYS ® 208 FI Figure7.7 » 205 FIE%R]: (S5 B
TR FRUEYT iR)

EMPLOYEE (FNAME, MINIT, LNAME ,-..» DNO)

DEPENDENT (ESSN, DEPENDENT NAME, SEX....)
Ans.: Tl (SSN,NO_OF DEPTS) < ESSNJF COUNT DEPENDENT NAME
(DEPENDENT)
T2 < 0 No OoF DEPTS =2 (T1)
RESULT < 7T LNAME FNAME (T2 * EMPLOYEE)

3.2 ¥FH 4 232 T QUERY6 * 208 I Figure7.7 » 205 FIE¥R]: (FH3LT|%

= %
WEYEIT 154
EMPLOYEE (F NAW,. .., DNO)
DEPENDENT (ESSN, DEPENDENT NAME, SEX,...)
Ans.: ALL EMPS < 77 ssN (EMPLOYEE)
EMPS_WITH_DEPS (SSN) < 77 EssN (DEPENDENT)
EMPS_WITHOUT DEPS < (ALL EMPS —
EMPS_ WITH DEPS)
RESULT <- 77 LNAME FNAME (EMPS WITHOUT DEPS

EMPLOYEE)
(B Outerjoin =V fi")

s

4.55% a4 232 F1 QUERY7 » 208 FI Figure7.7 » 205 FIE¥R: (F[t1i= DE
— FRRAEE:)

EMPLOYEE (FNAME, MINIT, LNAM N,..., DNO

DEPENDENT (ESSN, DEPENDENT NAME, SEX,..

V 3
DEPARTMENT (DNAME, DNUMBER, MGRSSN,...)

Ans.: MGRS (SSN) < 77 MGRsSSN (DEPARTMENT)
EMPS WITH DEPS (SSN) < 77 EssN (DEPENDENT)
MGRS WITH DEPS < (MGRS M EMPS WITH DEPS)
RESULT <~ 77 LNAMEFNAME (MGRS WITH DEPS
EMPLOYEE)

A 239 F1 7.25 % 7.26 ??Eﬁ [l (%0 it AR BBS '—*]‘Tu °

(=) ERD ZB‘,EE’?‘/I?}%%”VF&JE |

(2 HFAFT290 FI 9.1.1)

1. ¥f&— {[& Entity Type & % — (s Table (Relational Schema) » [F=Table [I¥5f
E2 I
Attribute : F7E ETEW’ Ef%E (Simple Attribute) —Fi e HE F‘[’:Ej’lfﬁ (Composite
Attribute) fIV5AY fETHI

Fg’ﬁﬂ: o

Primary Key : 3~ [ji Key Attribute - ¥ :

) @y Greed) o)
| empLOYEE \
ge

EMPLOYEE (Pid, Name, City, Street, No, Age)’ b2 #F 4 Figure 3.2 & 7.7
H[/ EMPLOYEE -

2. #f5 (e % ffi (Multi-valued) gf% » & % — {fif Table (Relational Schema) -
IF=Table gﬂi;}’ [0 2 s

Attribute @ FTE J"”’?"/F”j’li — 'FUgf Entity Type ./ Primary Key ©

Primary Key FrE I’ F Attributes < fJ]

ST £) ik %~ i Table » pIFIE % — SR (Pno, £7%, 240 <H
B & $57] 15 Key,.
P2 HF A Figure 3.2 [t DEPARTMENT f[1) Locations ©

3515~ {[s! Weak Entity Type & % — {jif Table (Relational Schema) » [=Table
Al o = S
Attribute : FTE ﬁ”’?‘}’:zj’lfﬁ (Attributes) -+ 'FUg Entity Type ./ Primary Key °
Primary Key : ‘E; 73 f% (Partial Key Attribute) - 'FUEf Entity Type ./
Primary Key ° [J] :

@\EMP —<<>— ok

Age

& 4 -5 (DPid, Name, Age) » Dpid Z¢ Pid 7FE' » P9t EMP A Ep i &
— ([Table -
plarH B Figure 3.2 & 7.7 HI DEPENDENT -

4 5F5—~ {fid 1:1 7 Relationship Types (R=% S) &~ Table (Relational
Schema) » [EE R JIfiE RFp— {[fd9H (Foreign Key ; 2 H %S I/
Key -4 i AT) W IELEE L TR [- Tabe
B ’/f, ﬁ I’} Total Participation (~JR2==2) F’fﬁ%[P F'Jﬁ‘: Entity

Type £ {8
@

DN

1

Ie% Mﬁ 1A =N TableF P JHEE (90 DEid) == %E[E1T pY Eid - [
sy] A |
bl ‘L‘“%%‘ii Figure 3 2577 HI DEPARTMENT == EMPLOYEE Vﬁ‘%&[,,
MANAGES -

5.5%F5 — {if 1:N 7 Relationship Type (R=%S) 3#&~ Table (Relational
Schema) HE5E SCF) N AVEH A) [T S Flrop = {91 8 Foreign Key ;
SYER D Key) %) P T B PR IS S 1

I G £
<Rl

“ "Ejj "EED Table Hmpg JHég: (19 : EDno) ;,f:i;g;iu {[i[FIfi Dno -
JJD RS EIQEJQJJJ[@U Hf o p et A Figure 3.2 K7 H EPARTMENT
T;JI

Dn

[

= EMPLOYEE [WORKS _FOR -

6.%f5— [M:N .V Relationship Type (R%* S)» % 4 — [Table (Relational
Schema) » [F=Table fgffd ko = SEI
Attribute © FT%| Relationship Type fiv'gf{% —+ q{# Foreign Keys (R S iy
(i Entity Type .V Key) e
Primary Kii * /s Foreign Keys - J] :

EMPLOYEE PROJECT
M <1 B N

& 4~ Table — WORKS ON (ESSN, Pno, Hours) » ESSN ‘ii‘:%f—‘ﬂ SSN
Pno % Z|| Pnumber -

bl A Figure 3.2 % 7.7 HI DEPARTMENT = EMPLOYEE ,j/ﬁ‘%ﬂr?
WORKS_ON -

7%=~ {fd n 7+ iY Relationship Type (n>2) - i& % — {f# Table (Relational
Schema) » [F=Table fgfd k> = SEI
Attribute : F7E | Relationship Type fiv/gf{t - F7e | = =*[Y Entity Type I/
Foreign Key °
Primary Key : 7% |fIV Foreign Keys -

8.Correspondence between ER and Relational Models :

ER Model Relational Model
Entity type "Entity" relation
1:1 or 1:N relationship type Foreign key (or "relationship" relation)
M:N relationship type "Relationship" relation and two foreign keys
n-ary relationship type "Relationship" relation and n foreign keys
Simple attribute Attribute
Composite attribute Set of simple component attributes
Multivalued attribute Relation and foreign key
Value set Domain
Key attribute Primary (or secondary) key

)4~ SQL : (Chapter 8)

A few facts about SQL

1. CL DT DBMS fit "I (Ui 5 s, ol DBMS g -
it SQL (Structured éuery anguage) i8I f{ «: FLJT‘F T SQL
ALy :;i’”“ DBMS {511 5'?J%fﬁJFJ: HEERIES

WS
2. Originally, SQL was called “SEQUEL” (for Structured English QUEry

Language) » & ¥/RLFTIBM f[’UIZ[“?Z[il Ey;ﬁu SYSTEMR > iz e fl
ANSI(American National Standards Institute) » ISO(International Standards
Orgamzatlon) JoETAEEY I

® SQLI1: SQL g 6 (ANSI 1986)

® SQL2:SQL-92

® SQL3 : Still on the way > combine relational and object models.

5 :\J&ﬁﬂﬁ ﬁ?JE'JFT;J"?ﬁ?“ DBMS fL3 2 SQL2 -

A few differences between SQL relational model and theoretical
relational model.

1. SQL uses the terms table, row, and column to indicate relation, tuple, and
attribute respectively that defined in the relational data model.

2. However, a table in SQL may contain duplicated rows, while a relation does
not contain duplicated tuples.

3. Atable in SQL does not have to specify its primary key.

SQL consists of three types of languages

1. Data Definition Language (DDL ; £vf] t—%?ﬁr)+ language syntax to add,
drop, modify a table definition.

2. Data Manipulation Language (DML ; e¥R[% E I | E’:ﬁ?) language syntax
to retrieve, insert, delete, modify rows of tables.

3. Data Control Language : (DCL ; aﬂﬂﬂu 2,) * language syntax to
grant/revoke the privileges(ff ' [##[=L) tJ access on the tables, and to control
the execution of transactions.

(—)Data Definition, Constraints, and Schema Changes
in SQL2
Schema Concepts in SQL2

1.An SQL schema is identified by a schema name, and an authorization identifier
to indicate the user or account who owns the schema.

2.The following statement creates a schema called COMPANY, owned by the
user with authorization identifier JSMITH.
CREATE SCHEMA COMPANY AUTHORIZATION JSMITH;

DDL in SQL

1.

CREATE TABLE Fl’ LT FEHIE H
® Table name.
Attribute name.
Attribute type -
Numeric: INT or INTEGER, SMALLINT (ﬂi@() FLOAT REAL,
DOUBLE PRECISION (#/g) » DECIMAL(X y). (&l BrRA) -
1. Character-string: CHAR(n), VARCHAR(n), BLCf B (3 : BLOB
—Binary Large Object » H [F7% A §if X £l E}*—IE?J; fb EI?J)
11. Bit-string,: BIT(n), BIT VARYING(n) °
iii. dateand time: TIME (HH:MM:SS), DATE (YYYY-MM-DD) -
TIMESTAMP DATE+TIME > TIME(2)—18:50:43:20 (El FI
IIF)
) Attrlbute constraints (EfE[SH]) ¢
i PRIMARY KEY (attribute list) : {J]:PRIMARY KEY
(DNUMBER, DLOCATION) ,
ii. FOREIGN KEY (attribute list) REFERENCES table name
(attribute list) ON DELETE...ON UPDATE... :
7l : FOREIGN KEY (SUPERSSN) REFERENCES
EMPLOYEE (SSN) ON DELETE SETNULL ON UPDATE
CASCADE;
iii. UNIQUE (attribute list) : t-Z alternate or secondary key °
iv. <attribute name> <attribute type> NOT NULL : [Nﬁ’ [attribute T
(A i
V. iattrlbut;i name> <attribute type> DEFAULT <value> : [Nﬁ" I
attribute Y['[e A CFI .
vi. CONSTRAIN T <constraint name> : TF I[N Hﬁl SEM (T [ﬁj
— schema [*[ZIfE—) Ty R Bl EY Rt T ﬁl}%[b L& €
?ﬁf[ﬁéﬁh:‘ o
Y Hh Y 247 FI Figure 8.1(a)* 249 1 Figure 8.1(b) °

DROP SCHEMA : #&— (g

® DROPSCHEMA COMPANY CASCADE (;[E-P_I%') - F[E= COMPANY
TR A E I B E) tables, domains, and other elements.

® DROPSCHEMA COMPANY RESTRICT (? IS H) : %l%"[ﬂ-@
COMPANY & ¥R[Fis 147 F'?Tffﬁ‘ii S %p ﬂ R o

. DROP TABLE : 7%~ {j table

® DROP TABLE DEPENDENT RESTRICT : [!{® J i i DEPENDENT E
i table J2 #LEl * table Fr reference ~|JE3J5T' A = EY[referential
integrity constraints or view definition J °

® DROP TABLE DEPENDENT CASCADE : Firt | reference
DEPENDENT [I¥ constraints *J £ Fﬁz;ﬁ_tﬁ ks - %l@% Figure 8.1(b)

ALTER TABLE : also called schema evolution (; FLﬁE I7gh{™) » [Xd¥ table

{19 SCHEMA. /[-

® ALTERTAB E COMPANY.EMPLOYEE ADD JOB
VARCHAR(12); © 571~ g -

® ALTER TABLE COMPANY.EMPLOYEE DROP ADDRESS
CASCADE; : ==~ [[i'gf% o All constraints and views that
reference the column ADDRESS are dropped cascadingly.

® ALTER TABLE COMPANY.EMPLOYEE DROP ADDRESS
RESTRICT; : BSLﬁj[J?“ k=~ e+ - ADDRESS is dropped only
when no constraints or views reference it.

® ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN
DROP DEFAULT; : {]# DEFAULT F[J °

® ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN SET
DEFAULT ‘33344555’; : f‘j%@?]%*{g DEFAULT F[J o (}{ﬁ’ DEFAULT
]"Elffl P 33344555”)

® ALTER TABLE COMPANY.EMPLOYEE DROP CONSTRAINT
EMPSUPERFK CASCADE; : %~ i CONSTRAINT -

® ALTER TABLE COMPANY.EMPLOYEE ADD CONSTRAINT
EMPSUPERFK CASCADE; : i /[I— {lif CONSTRAINT -

(Z) Basic Queries in SQL (part of SQL DML)
SELECT-FROM-WHERE Structure of SQL Queries

1. SELECT statement, sometimes called a mapping or select-from-where
block.
Basic form : SELECT<attribute list>
FROM <table list>
WHERE <condition>
A Figure 7.7 -
2. QO : Retrieve the birthdate and address of employee(s) whose name is “John
B. Smith”
Ans. : SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME = "John" AND MINIT ="B"
AND LNAME ="Smith" ;
3. Q1 : Retrieve the name and address of employees who work for the
"Research" department.
Ans. : SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME = "Research’ AND DNUMBER = DNO ;
4. Q2 : For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s last name,
address, and birthdate.
Ans. : SELECT PNUMBER, DNUM, LNAME, ADDRESS,
BDATE
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM = DNUMBER AND MGRSSN = SSN
AND PLOCATION = 'Stafford' ;

Dealing with Ambiguous (T\?ﬁg’f{gf@) Attribute Names
1. Same name in different relation, e.g., Suppose EMPLOYEE has attributes
DNUMBER and NAME (rather than DNO and LNAME) , and
DEPARTMENT has NAME (rather than DNAME) .
Q1 can be revised to the following (255 FI Q1A) :
SELECT FNAME, EMPLOYEE. NAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT. NAME = ’Research’ AND
DEPARTMENT.DNUMBER = EMPLOYEE.DNUMBER
2. A query involves the same relation twice—use aliases, % /&il"] ™ fi¥ query :
® Q8 : For each employee, retrieve the employee’s first and last name and
the first and last name of his or her immediate supervisor.
Ans. : SELECT E.FNAME, E.LNAME, S.FNAME, S._LNAME
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSSN=S.SSN ;
® E and S are called aliases to EMPLOYEE. Alias can also be used just to
shorten the relation names that prefix the attributes. For example, Q1
can be written as follows :
QIB: SELECT E.FNAME, E.LNAME, E.ADDRESS
FROM EMPLOYEE AS E, DEPARTMENT AS D
WHERE D.DNAME = "Research’
AND D.DNUMBER = E.DNUMBER ;

Unspecified WHERE-Clause and Use of Asterisk (%)

1. Missing WHERE clause indicates no condition on row selection.
Q9 : Select the SSNs of all employee.

Ans. : SELECT SSN
FROM EMPLOYEE;
Q10 : Select all combinations of EMPLOYEE SSN and DEPARTMENT
DNAME of.
Ans. : SELECT SSN, DNAME
FROM EMPLOYEE, DEPARTMENT; (ﬁ“ﬁ e

cross Product)

2. ffi™] sk (Asterisk) & foI Retrieve ;:“IFI“[BFET}’I‘% P
SELECT *k
FROM EMPLOYEE
WHERE DNO=5;

3. Cartesian Product can be specified by missing WHERE clause > [J[J]!
SELECT *k
FROM EMPLOYEE,DEPARTMENT;

Set Operation (& flfi_rﬂ) in SQL
1. SQL does not automatically eliminate duplicate rows in the results of queries.
SV (W
IR HE rows I RE AR T [PPSR A
=y

ii. j (el ™1 p" SRIE ;ﬂﬂi‘l HIEYR] o
RIS T ATEE m;rﬁﬂﬁ I YR [y
2. Elimination of duplicated rows is done explicitly, e.g.
SELECT DISTINCT SALARY
FROM EMPLOYEE;
Cll fft s row 3] ffat - YOy > ZE 17) DISTINCT)
Q11 : Retrieve the salary of every employee (A) and all distinct salary values

(B).
Ans.: (A)SELECT ALL SALARY
FROM EMPLOYEE;
(B) SELECT DISTINCT SALARY
FROM EMPLOYEE;

3. SET operations (e.g., UNION, MINUS, INTERSECT) , can be applied on
"union compatible" relations.
SR [= E) OARIRIRET P O T o AR] = TRl sl > FJIPfy [l
£ "umon compatlble
® (4 : Make a list of all project numbers for projects that involve an
employee whose last name is 'Smith', either as a worker or as a
manager of the department that controls the project.
(SELECT DISTINCT PNUMBER [Smith F ’?*FTE%,E Y Project #]
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM = DNUMBER AND MGRSSN =SSN
AND LNAME = 'Smith')

UNION
(SELECT DISTINCT PNUMBER [Smith 5771 Project #]
FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE PNUMBER =PNO AND ESSN = SSN
AND LNAME = 'Smith");
(IF=f7] 7 DISTINCT i? BFrITE?)
Smith Al Project H#R dEERYIN
(SELECT ~ PNO ASPNUMBER (Il /7l i) 4 F)
FROM WORKS ON, EMPLOYEE
WHERE ESSN = SSN AND LNAME = 'Smith");

Substring Comparisons, Arithmetic Operators, and Ordering

1. LIKE qualifier can be used in clause to do substring comparison.
® Q12 : Retrieve all employees whose address is in Houston, Texas.
Ans. © SELECT FNAME, LNAME

FROM EMPLOYEE
WHERE ADDRESS LIKE ‘% Houston, TX %’;
[LIKE £ "% &1 "= i el

["%" 3 ' B 2 W]
Q12A : Find all employees who were born during the 1950s.
Ans.: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE BDATE LIKE ¢ 5 N

(" A5 e R
2. Simple arithmetic (;[can be applied on the returned values.
® Q13 : Show the resulting salaries if every employee working on the
"ProductX" project is given a 10 percent raise.
SELECT FNAME, LNAME, 1.1 %k SALARY

FROM EMPLOYEE, WORKS ON, PROJECT
WHERE SSN = ESSN AND PNO = PNUMBER AND PNAME
= ‘ProductX’;

3. Aninterval value can be specified as the difference between two values.
® Q14 : Retrieve all employees in department 5 whose salary is between

$30,000 and $40,000.
Ans. SELECT *

FROM EMPLOYEE

WHERE (SALARY BETWEEN 30000 AND 40000) AND
DNO = 5;

4. ORDER BY clause is used to specify the listing order of the query result.
® (15 : Retrieve a list of employees and the projects they are working on,
order by department and, within each department, ordered alphabetically
by last name, first name.
SELECT DNAME, LNAME, FNAME, PNAME
FROM DEPARTMENT, EMPLOYEE, WORKS ON, PROJECT
WHERE DNUMBER = DNO AND SSN = ESSN AND PNO =
PNUMBER
ORDER BY DNAME, LNAME, FNAME;
® ORDERBY FIJH Ifi" | DESC %7 & EET- » ASC A7 &I EHET- -
] -
ORDER BY DNAME DESC, LNAME ASC, FNAME ASC;

(=) More Complex SQL Query

Nested Queries and Set Comparisons

1. The queries that have a complete SELECT-clause appears within the
WHERE-clause of another query (outer query).
® (Q4A : Make a list of all project numbers for projects that involve an
employee whose last name is 'Smith', either as a worker or as a manager
of the department that controls the project.
Ans. : (SELECT DISTINCT PNUMBER
FROM PROJECT
WHERE PNUMBER IN [Smith ﬁﬁ*ﬁ?ﬁ%ﬁfj Project #)
(SELECT PNUMBER
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM =DNUMBER
AND MGRSSN = SSN
AND LNAME ='Smith')
OR
PNUMBER IN [Smith EI F fftp™ Project #]

(SELECT PNO
FROM WORKS ON, EMPLOYE
WHERE ESSN = SSN AND LNAME =
'Smith');
o Comparlson operator IN X [fiu[* Sﬁ@ kLt Sﬁ | 50 6F s R 3
%1 e
2. IN lﬁjgﬁﬁ i’ (e fle i f[=
T, L[R E %[I Smith EJ?FEI[P (PNO, HOURS)f! JE 7 BV SSN
SELECT DISTINCT ESSN
FROM WORKS ON
WHERE (PNO, HOURS) IN (SELECT PNO, HOURS FROM
WORKS ON WHERE ESSN = 123456789) ;
3. b9t fj SOME & ANY F[‘ E{El L‘[> >= < <= <> = fﬁ[Al =(>,>=, <,
<=) ANY (SELECT....)» =(> >=,<,<=) SOME (SELECT...)) -
® HSHIFAHI S E (-) FIT OBeRR T i
SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > ALL (SELECT SALARY FROM EMPLOYEE
WHERE DNO = 5);

4. In anested query, an ambiguous, unqualified attribute refers to relation in the
innermost nested query, e.g.:
® (Q16: Retrieve the name of each employee who has a dependent with the
same first name and same sex
as the employee.
Ans. © SELECT E.FNAME, E.LNAME
FROM EMPLOYEE ASE
WHEREE.ESS IN (SELECT ESSN
FROM DEPENDENT
WHERE EFNAME =
DEPENDENT NAME AND E.SEX = SEX) ;
E.SEX [[1 E & f’ir/f%ﬂlﬁh Eepy o f RS /f%ﬂ% SN
Table » 47 ¢78 BT Ra 7 2 ffg‘[- b e e e
e L EPE)
5. éj ﬁiﬂ“ IN P 3E B Jf)\[ﬁ“’\g‘ U 2 #1— E] (single block) g‘[E AT
=R

® Q16A - SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E, DEPENDENT AS D
WHERE E.ESS = D.ESSN AND E.SEX = D.SEX AND
E.FNAME = D.DEPENDENT NAME) ;

F&
SELECT FNAME, LNAME
FROM (EMPLOYEE JOIN DEPENDENT ON SSN = ESSN)

WHERE EMPLOYEE.SEX=DEPENDENT.SEX AND
FNAME=DEPENDENT NAME;

EXISTS Function in SQL
1. Q16B : SELECT E.FNAME, ELNAME

FROM EMPLOYEE AS E

WHERE EXISTS (SELECT =
FROM DEPENDENT
WHERE E.SSN = ESSN

AND E.SEX = SEX

AND E.FNAME =DEPENDENT_NAME) ;

%47 5] Relation R » #/7 %[SELECT #53% » Sh{UY[iffp 2

SELECT A
FROM R
WHERE EXISTS (SELECT *

FROM DEPARTMENT (=¥ 205)
WHERE DNUMBER=B;
Ans. : [lFja -
2. Q6 : Retrieve the name of employees who have no dependents.
Ans. : SELECT FNAME, LNAME
FROM EMPLOYEE

WHERE NOT EXISTS (SELECT
FROM DEPENDENT

WHERE SSN=ESSN) ;
3. Q7 : List the names of managers who have at least one dependent.
Ans.: SELECT FNAME, LNAME
FROM EMPLOYEE

WHERE EXISTS (SELECT
FROM DEPENDENT

WHERE SSN=ESSN)
AND

EXISTS (SELECT
FROM DEPARTMENT

WHERE SSN=MGRSSN) ;

Explicit Sets and NULLs in SQL
1. 7+ WHERE ~ HJEE[fi*H P FE?FI AENITIRS ,(exphclt set of values) ™V {*I'] i
SRR > bl
Q17 : Retrieve the social security numbers of all employees who work
on project number 1, 2, or 3.
Ans. : SELECT DISTINCT ESSN
FROM WORKS ON
WHERE PNOIN (1,2 3)
2. MJISNULL g5 ISNOT NULL . g‘[eS| fﬁ@if P B

"NULL" - 5] :
Q18 : Retrieve the names of all employees who do not have supervisors.
Ans. : SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE SUPERSSN IS NULL;

Renaming Attributes and Joined Tables
1. At/S A7 SELECT = F[J—}s'/ WHERE F[J) F H\% ’E’;}’Iibrﬁg’ﬁ% V]
£y’ il
® QS8A: SELECT E.LNAME AS EMPLOYEE NAME,
S.LNAME AS SUPERVISOR NAME
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSSN = S.SSN;
2. JOIN...ON...fififg =V 1" M| FROM =" fi/il [BH7E35 Table 12 5 51
s i
e Ql1A: SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE JOIN DEPARTMENT
ON DNO = DNUMBER)
WHERE DNAME = ’Research’;
(EMPLOYEE JOIN DEPARTMENT ON DNO = DNUMBER) =] [ﬁ]
(EMPLOYEEM DNO = DNUMBER DEPARTMENT)
3. {fi"] NATURE JOIN Efﬁ HIAS RISEHE o iR FTJ‘F”F' [ﬂ PO (B
SR > Bl
® QI1B : SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE NATURE JOIN(DEPARTMENT
AS DEPT(DNAME, DNO, MSSN, MSDATE)))
WHERE DNAME = "Research’;
(IRl & [w * [Fﬁﬁ’ '} DNO [=f IRalind)
4. — 45 JOIN £L inner join > ¥ ffi™] T OUTER JOIN rﬁl# I~ Table [
FrE| Tuples (W3] » [] :
® Q8B : SELECT E.LNAME AS EMPLOYEE NAME,
S.LNAME AS SUPERVISOR NAME
FROM (EMPLOYEE AS E LEFT OUTER JOIN
EMPLOYEE AS S ON E.SUPERSSN = S.SSN;
5. J[“Iﬁf JOIN 1%!:_ 7% 1 =0 INNER JOIN(fﬁJ JOIN), LEFT OUTER JOIN,
RIGHT OUTER JOIN, FULL OUTER JOIN -

Aggregate Function and Grouping
LFL““ﬂJﬁ: & 7 COUNT, SUM, MAX, MIN, AVG =" 7' [fi¥|7+ SELECT
F,ﬂs’, HAVING = F[J o
General form -
SELECT <attribute and aggregate function list>
FROM <table list>
WHERE <condition>
GROUP BY <attribute list>
HAVING <group condition >;
T el (B3 AT v Ars F&Iﬂ SETENEE T GROUP BY
See the following ﬁgure for illustration.

7 WHERE GROUPBY HAVING
7 —> —> [=
7
v
v

® (Q19:Find the sum of the salaries of all employees, the maximum salary,
the minimum salary, and the average salary.
SELECT SUM(SALARY) * MAX(SALARY) * MIN(SALARY) >
AVG(SALARY)
FROM EMPLOYEE;
® (20 : Find the sum of the salaries of all employees of the 'Research’
department, as well as the maximum salary, the minimum salary, and the
average salary in this department.
SELECT SUM(SALARY) * MAX(SALARY) > MIN(SALARY) >
AVG(SALARY)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO = DNUMBER AND DNAME = 'Research’;

. COUNT () counts the number of values in the parameter. 7] :

® (21 and Q22 : Retrieve the total number of employees in the
company(Q21) and the number of employees in the 'Research'’

department(Q22).
Ans.Q21 : SELECT COUNT()
FROM EMPLOYEE
Ans.Q22 : SELECT COUNT()
FROM EMPLOYEE, DEPARTMENT

WHERE DNO = DNUMBER AND DNAME =
'Research’;
Rtk (Asterisk) FA- ') row (tuple) FFETREE! - P g5
E,TEJFI‘— column » I] :
® To count only the number of distinct values, the keyword 'DISTINCT'
has to be specified.
(“f= "DISTINCT" Z= PEF* £itpufi Ve
Q23 : Count the number of distinct salary values in the database.
Ans. : SELECT COUNT (DISTINCT SALARY)
FROM EMPLOYEE;

. Aggregate functions can also appear in the nested query in the WHERE

clause.
® (S5 : Retrieve the names of all employees who have two or more
dependent.

Ans.: SELECT LNAME, FNAME

FROM EMPLOYEE
WHERE (SELECT COUNT(*)
FROM DEPENDENT

WHERE SSN = ESSN) >=2;
M| SSN = ESSN I EMPLOYEE » DEPENDENT fM?”'ﬁ@‘*{é °
. Grouping attributes * I Z=[7 SELECT < juf*| > I') [’Elgir,%?lf IR A
i PUSE Grouping attributes ¥[J¢T4 > 7Y
® Q24 : For each department, retrieve the department number, the number
of employees in the department,
and their average salary.
Ans. : SELECT DNO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE
GROUPBY DNO; (%# Figure 8.4(a))
® (25 : For each project, retrieve the project number, the project name,
and the number of employees who work on that project.
Ans. : SELECT PNUMBER, PNAME, COUNT(%)
FROM PROJECT, WORKS ON
WHERE PNUMBER = PNO
GROUP BY PNUMBER, PNAME;
. HAVING provides a condition on the group of tuples associated with each
value of the grouping attributes.
® (26 : For each project on which more than two employees work,
retrieve the project number, the project name, and the number of
employees who work on that project.

Ans. : SELECT PNUMBER, PNAME, COUNT(%)
(=¥ Figure 8.4(b))
FROM PROJECT, WORKS ON

WHERE PNUMBER = PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT (k) >2;
(HAVING £LEE GROUP BY [UfEfF)
® Q27 : For each project, retrieve the project number, the project name,
and the number of employees from department 5 who work on that

project.
Ans. : SELECT PNUMBER, PNAME, COUNT()
FROM PROJECT, WORKS ON,EMPLOYEE
WHERE PNUMBER = PNO AND SSN = ESSN AND
DNO =5

GROUP BY PNUMBER, PNAME;
® Q28 : For each department that has more than five employees, retrieve
the department number and the number of its employees who are

making more than $40,000.
Ans. : SELECT DNUMBER, COUNT(*)
FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER = DNO AND SALARY > 40000

AND
DNOIN (SELECT DNO
FROM EMPLOYEE
GROUP BY DNO
HAVING COUNT(*)>5)
GROUP BY DNUMBER;
(SIS {5 - ORI PR 4P
840,000 p ~ Efo)
What’s wrong with the following query:
SELECT DNUMBER, COUNT(¥*)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER = DNO AND SALARY > 40000
GROUP BY DNUMBER
HAVING COUNT(*x)>5;

(P4) Insert > Delete > and Update Statements in SQL

The INSERT Command
1. INSERT ®[%I~ {f tuple Z[|— {[# relation » % [value Jo/"FI-fI
CREATE TABLE 5’?%&?%!@77& o
2. ﬁ%i??ﬁ?iﬁ : INSERT INTO table-name[(attribute list)]
VALUES (attribute-value-list);
5] = Ul INSERT INTO EMPLOYEE
VALUES (‘Richard', 'K', '"Marini', '653298653',
'1962 12-30', '98 Oak Forest, Katy’, ‘TX"', 'M', '37000', '987654321', 4);
3. F BT T attributes Ef J r-_f‘ff PP PVEHE S RIS (e YJFTJ
Il) &l 'IE[“E"?J]E[EK/ NULL -
{7l : UlA: INSERT INTO EMPLOYEE (FNAME, LNAME, DNO, SSN)
VALUES ('Richard', 'Marini', 4, '653298653');
4. PHTERR 0 SQL Hr st R IR e COHE ke 3 9
Ej? fil i)
] INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO)
VALUES 'Robert' 'Hatcher', '980760540', 2);
(U2 Q%Elvﬁdwﬂi REEIGH] - DNO T %) 20 i T =Pt
: INSERT INTO E LOYEE (FNAME LNAME DNO)
VALUES ('Robert', 'Hatcher', 2);
(U2A 2% = # SSN ’ELFT SoETET)
S PRI (% 5 able SRR TONGE
U3A: CREATE TA LE DEPTS_INFO
(DEPT NAME VARCHAR(15),
NO_OF EMPS INTEGER,
TOTAL SAL INTEGER);
U3B: INSERT INTO DEPTS INFO(DEPT NAME,
NO OF EMPS, TOTAL SAL)

SELECT DNAME, COUNT(), SUM(SALARY)

FROM (DEPARTMENT JOIN EMPLOYEE
ON DNUMBER = DNO)
GROUP BY DNAME;

The DELETE Command
1. DELETE "[%{[[&=— [tuple(f&— {[f relation #!) T [FFEIRE relation

VAR] - 251 (%% 205 £ EMPLOYEE) |
® U4A: DELETE FROM EMPLOYEE
WHERE LNAME = 'Brown';
€l EGRSSD)
® U4B: DELETE FROM EMPLOYEE
WHERE SSN = '123456789";
(IR 1 28R
® U4C: DELETE FROM EMPLOYEE

WHERE DNO IN (SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME = 'Research');
(M= 4 2TevR])
U4D : DELETE FROM EMPLOYEE;
(PR 2 H 2D

The UPDATE Command
1. UPDATE #5329 {£d¥ values of selected tuples » &% p L e
relation [* [N YR o
2. ﬁ%i??ﬁ?iﬁ : UPDATE table-name
SET attribute = value, attribute = value,......
WHERE condition;
3. 7
® US: UPDATE PROJECT

SET PLOCATION = 'Bellaire', DNUM = 5
WHERE PNUMBER = 10;
® U6 : UPDATE EMPLOYEE
SET SALARY =SALARY * 1.1
WHERE DNO IN (SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME = 'Research');

(v) Views (Virtual Tables) in SQL
View Concept in SQL

1. View hLAEZHY Table » fLETIEN 9 E 07 73 (Y table LN e piv iﬁlﬁfjﬂﬁ”
[{5 2l tables (defining tables) JOIN [fij ¥ o

2. View F|RfE"[i#
i Eﬁ? e LAY views T fHEH I E -
Q)7 EF RIS ESTE views o 355 {lil it ﬁfﬁ,ﬁﬁfﬁjﬁl (external
schema) °

Specification of Views in SQL

1. i—ﬁﬂ? : CREATE VIEW view-name
AS select-statement
] :
® V1 : CREATE VIEW WORKS ONI1
AS SELECT FNAME, LNAME, PNAME, HOURS
FROM EMPLOYEE, PROJECT, WORKS ON

WHERE SSN = ESSN AND PNO = PNUMBER;
ERE E[@@?]%‘{»_Tame NG
WORKS ONI1 (FNAME, LNAME, PNAME, HOURS)
® V2 : CREATE VIEW DEPT INFO(DEPT NAME, NO OF EMPS,
TOTAL SAL)
AS SELECT DNAME, COUNT(%), SUM(SALARY)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER = DNO
GROUPBY DNAME;
E e F[fjg]i%Table VEEED
DEPT _INFO (DEPT NAME, NO OF EMPS, TOTAL SAL)

2. & 4 fvview > [']') Hi[=base table I "] > T Eﬁ‘[“‘ﬁ[RV 5 P
defining table (base table) .V fifi el » F[F |- %%k FfF:% view Eﬂj{@ﬂfﬁ'—é’
R EREY
® QVl1: SELECT FNAME, LNAME

FROM WORKS_ONI1
WHERE PNAME = "ProjectX’;

3. R i view #| DROP VIEW $5 » 3] :
® VIA: DROP VIEW WORKS ONI;
® V2A: DROP VIEW DEPT INFO;

View Implementation and View Update

1. An update to a view may be ambiguous. Thus, in general, a view is
updateable only when:
(1)The view is defined on a single table, and (HF7 — {FAH)
(2)The view does not include aggregate functions in its definition, and (tF
1] P
(3)The view attributes contains the primary key(or possibly some other
candidate key)of the base relation. (Ff4tfo! & FA'[EI'??\L_’%EI'\’J%E (= %ﬁ‘/ﬁﬂ

)

2. % WORKS_ONI1>Rid¥ 'John Smith' [V PNAME %> E(£E 'ProductX' d%
£ 'ProductY’.
UVl : UPDATE WORKS ONI1
SET PNAME = "ProductY’
WHERE LNAME = 'Smith' AND FNAME = 'John' AND
PNAME = "ProductX';
e ([fUV] EJ SRENICTERN Pdﬁ}{’f[’ WORKS ONI d¥5%9[1 UV 1 =]
FNN R

UPDATE WORKS ON
SET PNO= (SELECT PNUMBER
FROM PROJECT
WHERE PNAME = ProductY")
WHERE ESSN IN (SELECT SSN
FROM EMPLOYEE
WHERE LNAME = 'Smith'
AND FNAME = 'John)
AND
PNO IN (SELECT PNUMBER
FROM PROJECT
WHERE PNAME = "ProductX");
A1
UPDATE PROJECT
SET PNAME = 'ProductY’
WHERE PNAME = 'ProductX;

() Specifying General Constrains as Assertions

1. Constraints on multiple tables can be specified by using ASSERTION (3@@]
HI7) in SQL.
2. The salary of an employee must not be greater than the salary of the manager
of the department that the employee works for.
?ﬁiiﬁ - CREATE ASSERTION SALARY CONSTRAINT
CHECK (NOT EXISTS
(SELECT *
FROM EMPLOYEE E, EMPLOYEE M, DEPARTMENT D
WHERE E.SALARY > M.SALARY AND
E.DNO = D.DNUMBER AND D.MGRSSN=M.SSN)) ;
3. [BRFYRI B3 £ DOMAIN HE -
RE CREATE DOMAIN D NUM AS INTEGER
CHECK (D NUM>0AND D NUM<21) ;
4. Some active mechanism in response to some event can be specified by using
TRIGGER (FPfi#E) in SQL.
® DEFINE TRIGGER SALARY, TRIGGER ON EMPLOYEE E,
EMPLOYEE M, DEPARTMENT D:
E.SALARY > M.SALARY AND E.DNO = D.DNUMBER AND
F.MGRSSN = M.SS
ACTION_PROCEDURE INFORM_MANAGER(D.MGRSSN);

(R 23 1)
() Specifying INDEX

1. Anindex is a physical access structure that is specified on one or more
attributes of a file. It can be used to accelerate the search of tuples based on
the values of the attributes.

2. INDEX statements were dropped from SQL2 standard. Howere, almost all
commercial DBMSs still include statements for specifying INDEX.

— 11

W

5

=TT

[1: CREATE INDEX LNAME INDEX

ON EMPLOYEE(LNAME);
[2: CREATE INDEX NAMES INDEX (WER ﬁi@ﬁ‘/@’ﬁ?ﬁﬁl
i SLE |)

ON EMPLOYEE (LNAME ASC, FNAME DESC, MINIT)
I14: CREATE INDEX DNO INDEX

ON EMPLOYEE (DNO)

CLUSTER; (% | EJ% Physical Elfﬂ"ﬁ’—:fﬂ]ﬁ)

—+ ~ Functional Dependencies and

Normalization for Relational Database
(CHAPTER 14, 15)

(—) Purpose

® In the mapping from ERD to relation schemas, we use some guidelines that were

intuitively reasonable. However, no measure of the appropriateness or goodness

of a design was introduced. (HEl'] @I?E - EEIEU%’I:_{E’;’FL EJ[J}{%]’ ERD HHisY [Hﬁfﬁ“

1o gk SRl GELI N RS KIER i LAY %) -

® This chapter will identify a set of rules and theories for designing “good”
relational schemas. (H%FETH - étﬂﬁ[ﬁ$’%7u* F%:Jr[ﬂiﬁfjfjﬁf‘?ﬁ?ﬁﬁ D) 3 Fio3
e A

A, B4 g*(conc tual/loglcal level) : Y[FJZ+¥E‘JF$,J‘*’"F@E i EUggd 2 Hi o

B. ¥~ gH(implementation/storage level) : 7+ —]E X TJ ﬁ-n(base refatlon)[R/

P i o I o

(Z) Informal Design Guidelines for Relational
Schemas

® Discuss four informal (ZE-=VfY) measures of quality for relation schema
design :
1. Semantics (Fi#i) of the attributes.
2. Reducing the redundant values in tuples.
3. Reducing the null values in tuples.
4. Disallowing the possibility of generating spurious (i) tuples.(T f! A
FURIZE [V tuples)
(I PRl 4k E ﬁ'lz'“l%l [ﬁﬁﬂ[“)

Semantics of The Relational Attributes

® Guideline 1: Design a relation schema that is easy to explain. Do not
combine attributes from multiple entity types and relationship types into a

single relation. (P EI°155 ’:Ej’%[ﬁﬂ”ﬁg'ff'ﬁtfﬂw A EIREF UFE’J’[*“?F Y= e
BT
[TJ wai Figure 14.3.(a) > (b) :
EMP DEPT (ENAME, SSN, BDATE, ADDRESS, DNUMBER,
DNAME, DNGRSSN)
EMP_PROJ (SSN, PNUMBER, HOURS, ENAME, PNAME,
PLOCATION)
EMP_DEPT jj 7 +* employees ! departments [4gf[% - EMP_PROJ iﬁif |
1" employees f{ I projects frgflE -
® EMP DEPT and EMP PROJ can be used as views, but they cause problems
when used as base relations.

Redundant Information in Tuples and Update Anomalies

® Guideline 2: Design the base relation schemas so that no update anomalies
occur. Update anomalies refer to insertion, deletion, and modification
anomalies (E%%EIQELYT: E%J?%’éﬁﬁq‘ﬁ‘ ’ ﬁ?iﬁ o IR BT ["Eﬁﬁ Bl
E R)

® Update anomalies occur due to the redundant information stored in a
relation.

® Compare the storage space needed by EMPLOYEE and DEPARTMENT in
Figure 14.2 and EMP_DEPT in Figure 14.4. (EMP_DEPT #I'i4*
[EMPLOYEE NATURAL JOIN DEPARTMENT] > Figure 14.4.5’?[’&*&1’25(&
¥ T Figure 14.2 £5%) o

® In addition to space waste, poor design can cause update anomalies ({Zel5
~ f») :

® Insert Anomalies: Redundant information must be inserted correctly.(El ’FE?FF[B
SRR B R PR

® No pure department information can exist by itself. (ZVFIgI— 72 F 7Ry

iliip)

o eletion Anomalies: Deletion of tuples may cause some information to lose
forever.(5 filffIE— FI -~ Hy=pd 2 WIERE - RIEIRHL woel = Il
CRGERRE

® Modification Anomalies: Change of the information about a department may
involve the modification to several tuples. (% ﬁ[ﬁﬁﬂﬁﬂiﬁi@z‘i * Eﬁ ’ E[JFS’Z??B
Y VAR RS T

Null Values in Tuples

® Guideline 3 : As far as possible, avoid placing attributes in a base relation
whose values may frequently be null. (“Fﬁ’;;f’J)Q’(FTEI\;%*E | I > el 4
B EL i)

® Null values waste space.

® Nulls cause ambiguous interpretation to aggregate operations such as
COUNT or SUM. (7 |E?§J?F&[£_'1E,TE3J‘ v A]@?HE‘E'E’;T‘LPE,TFH ? COUNT E\HJ‘ T
FTRL- 3T

o

Nulls comprise (&/ ?ﬁ) different meanings. (Tif™| ~ T HIE ~ HLE (1§
ot i)

Generation of Spurious Tuples

Guideline 4 : Design relation schemas so that they can be JOINed with equality
conditions on attributes that are either primary keys or foreign keys in a way that
guarantees no spurious tuples are generated. (') primary keys ﬁ‘} foreign keys
[=JOIN 7} T Tt I Z&EPY tuples)

See EMP_LOCS and EMP_PROIJ1 in Figure 14.5. By natural joining
EMP_LOCS and EMP_PROIJ1, more tuples than EMP PROJ in Figure 14.4 are
generated. These tuples are called spurious tuples.

The design is bad because PLOCATION is neither a primary key nor a foreign
key in both relations.

i

U S
TI

FPEH R R PSIER B LA [AR
B ER ST 2k -

ngu R e T (IR AR T £ Coin) FFY
R o

,|~Jj\iﬁﬁ,'l»ﬁlréjgﬁfjﬁl¢ Féfgﬁ?}%i IE[F/—‘IE\JJr : 'FAfF—f?—i TER 2EETE -

(=) Functional Dependencies :

Functional dependency is a formal concept that can be used to define the
“goodness” and “badness” of individual relation schema more precisely. (ﬁr[gﬁ‘ﬁ'
(RRL- (TSP HOfER, 2 RO IR E)
Several normal forms are based on the concept of Eunctional dependency.
A functional dependency, denoted as X—Y, between two sets of attributes X and
Y that are subsets of R (universal relation schema) specifies for any two tuples tl
and t2 in r(R) such that t1[X] = t2[X], we must also have t1[Y]=t2[Y]. (7% R]I
S tuple 9 Y R PO X BRI » B F X R O
PE— HE Y B)
With X—Y, we say X determines Y or Y is functionally dependent on X. (We
also say that there is a functional dependency from X to Y)
Note that a primary (candidate) key of a relation R determines any set of
attributes in R. (= S PUEE Fr: F%fd?%’ﬁ,j/ B E | Tkl)
® See Figure 14.3 (a), (b) for diagrammatic representation. (Both suffer from
update anomalies)
® A functional dependency is a semantic property (FYgfTfvHiz) of the
relation schema and cannot be inferred (%[}) automatically from a given
relation extension. See Figure 14.7, where TEXT—COURSE may be
incorrectly inferred. (Hi:f [ﬁfjﬂ’?ﬁﬁﬁﬁg tuples fLay ot o (EIT] i - L)
® Functional dependencies are abbreviated as FD (or f.d.) .

Inference Rules for Functional Dependencies

More functional dependencies can be inferred from a set of given dependencies.
(ifi-~ £ FDs [IHEHIRI % FDs » S F>F") » I % - 2

LR

EMP_DEPT(ENAME, SSN, BDATE, ADDRESS, DNUMBER, DNAME,
DMGRSSN)

F={ SSN—{ENAME, BDATE, ADDRESS, DNUMBER}, DNUMBER—
{DNAME, DMGRSSN} }
EG{ (-F phidtEaEL o SSN—>{DNAME, DMGRSSN}, SSN—>SSN,
DNUMBER—DNAME.
The set of FDs that can be inferred from a set of given dependencies F is called
the closure of F, denoted as F*. (8/ & iﬁH IEI}?IFP?EJF ﬁ‘:ﬁfj FDs &)
FRLECP iR R F I)
We use the notation F |= X—Y to denote that the functional dependency X—Y is
inferred from the set of functional dependencies F. (£} ff1& Eiﬁ’}lfj
FD{X,Y}—>Z L XY—>Z > FD{X,Y,Z} > {U,V} i f L XYZ->UV.)

Six well-known inference rules for functional dependencies : \

B[R] (reflexive rule) : If X2V ° then X—Y.(A set of attributes always
determined itself or any of its subsets)

B [R2 (augmentation rule) : {X—>Y} |= XZ—>YZ.(Adding the same set of
attributes to both the left-handand right-hand sides of a dependency result in
another valid dependency. - fi' ff5% {X—>Y} F o XZoY. g
ELES: WA H1EI

B [R3 (transitive rule) : {X—>Y ,Y->Z} |= X—Z.(functional dependencies
are transitive ; P2

B[R4 (decomposition, or projective, rule) : {X—>YZ} |= X—Y.(We can
remove attributes from the right-hand side of a dependency. For example,
repeatedly decompose the FD X—{A1, A2, ..., An} into the set of
dependencies {X—>Al, X—>A2, ..., X—>An}.

B [R5 (union, or additive, rule) : {X—>Y , X—>Z} |= X—>YZ.(Allows us
to do the opposite for IR4)

B [R6 (pseudotransitive rule) : {X—>Y , WY—>Z} |= WX—Z. ([EF2iEi
HID

The above inference rules IR1 through IR3 are called Armstrong’s inference

rules. (IR4, IRS, IR6 RLF[[F] IR1, IR2, IR3 HE&LLT < fiY)

When given a set of FD F, for each X—Y in F, we can use Armstrong’s inference

rules to determine the set of attributes that are dependent on X, denoted as X". X"

is called the closure of X under F.

S YFL 6.(b) » B F 3

F={ SSN—ENAME, PNUMBER— {PNAME, PLOCATION}, {SSN, PNUMBER}

—HOURS}

FIIF'| Algorithm 14.1 (3#3F % 481 FI determining X.) [N \r/[Jl?fJiif‘ F

AUBLE £

{SSN1"={SSN, ENAME},

{PNUMBER} " = {PNUMBER, PNAME, PLOCATION},

{SSN, PNUMBER}" = {SSN, PNUMBER, ENAME, PNAME, PLOCATION,

HOURS}.

Two functional dependencies E and Fare equivalent if E'=F". (Every FD in E

can be inferred from F, and every FD in F can be inferred from E ; that is , E is

equivalent to F if both the conditions E covers F and F covers E hold.)

A set of FD F is minimal if it satisfies the following conditions :

(1) Every dependency in F has a single attribute for its right-hand side.

(2) We cannot replace any dependency X—A in F with a dependency Y—A,

where Y is a proper subset of X, and still have a set of dependencies that is

equivalent to F.

(3) We can not remove any dependency from F and still have a set of

dependencies that is equivalent to F.

5 - FD#) f‘*ij?“ﬁ%‘ifj%%'i¢ 483 F1 Algorithm 14.2.

(") Normal Forms Based on Keys

® The normalization process was first proposed by Codd (1972a) . It takes a
relation schema through a series of tests to "certify" whether it satisfies a certain
normal form (A F’?FE sl e pradld| 17” 5 - TJT'QWE [fQ_ RIS
IR

® INF, 2E\IF 3NF, BCNF are based on the concept of functional dependencies
among the attributes of a relation. The 4NF and SNF are based on the concepts
of multivalued dependencies and join dependencies , respectively.

® Normalization of data can be seen as a process to decompose an unsatisfactory
relation into smaller relations that possess the desirable properties.

® i ,Q‘I‘Ejﬁﬁ_{ﬁ “l\f[Y ?I%‘:l':gﬁ YL
o) 7[#% {lit TJ fjr,;[fq‘ p YT AL E "key" RED “EHIER *}Igpﬁ[[wv

130 EL 7 o
o I&‘T'Tﬁ T | TR RS i VR T
EE TE ' Jfﬁ%q’?ﬁ?ﬁﬁ he
L Database de51gners need not always normalize to the highest possible normal
form due to performance reasons or the complexity for checking constraints. (T
R SR > R)

lgecall the definitions about superkey, key, primary key, and candidate key.

® superkey: - BHH EJ*“[| HGEE tuple [fLRLIE—~ fy— 5 g% -

® key: IR DEVETE superkey -

® candidate key: T+ FTJTW |p key | ZHt— |[4EJJr =) ([key ’%” 5T
candidate key °

® primary key: (§-candidate key (= Hi:E i~ |ﬁ€ | primary key °

® An attribute of R is called a prime attribute (g fol g% if it is a member of any
key of R. (F‘ HIJ#E £% nonprime attribute)

First Normal Form (1NF)

® Def.(INF) : The domain of each attribute must be simple and single-valued. (T
H? Iﬁ T’"[‘A'? H I”f’ TJW A3 = tuples [iY attributes fl— I’WTJH%% i
H:IE IE o
[lNF conforms to the definition of relations. (=2 TJ e H—ﬂﬁ‘[ﬂ FHET

kL % v)

® See Flgure 14.8, 14. g for the handling of multi-valued attributes » &% % [;E?Ef e
Hﬁﬁ :

?”‘%];E_’I’?E}’[i?i’/ﬁ“ ’ [if?[FLTJ 5 primary key bl — %ﬁ?’ Tﬁ“’“p Sl
g e prlmary key (‘#ﬂ figure 14.2) -
[] ?E)L key il E[JF [;EIF”;}’Ii (=¥ figure 14.8(c)) °

W ROt R e e SRR A FET!’[*(T[EE)
o HELfif o (E{J@ﬁ_ ﬂituples ﬂJlﬂﬂi%rftfﬁni EATIDE
Second Normal Form (2NF)

® Def. (full functional dependency) : A FD X—Y is a full functional dependency
if the removal of any attribute from X means the dependency does not hold any
more. [That is, for any attributes A € X, (X — {A})does not functionally

determine Y] °

ZH B4 Figure 14.3.

Def. (2NF) : A relation schema R is in 2NF if every nonprime attribute A in R is
fully functionally dependent on every key of R.

% Figure 14.8(c) DEPARTMENT(DNAME, DNUMBER, DMGRSSN,
DLOCATION) [=f3]f[1{& DNUMBER H[[fi’ ¥kt DNAME, DMGRSSN {41
= DLOCATION £% key °

¥ Figure 14.10(a) ([ﬁjf) nonprime attribute ENAME & 11 SSN H[[F' ¥R

& » nonprime attribute PNAME, PLOCATION f& 't PNUMBER J[[f' Lt » %
T ﬁﬁl 2NF JHJEE o £ ¥ 2NF (™ S5) %[J’?*f EP1, EP2, EP3 E‘Iﬂﬁf&l
ONF {2 -

%4 Figure 14.9(b), 3% SSN, PNUMBER £} key » #iF T f—'fﬁ 2NF e -
SSN J[Jf" 1 ENAME -

%% Figure 14.11(a). [I1E FD2 i’ %I COUNTY_NAME, LOT##L secondary key,
%F TAX_RATE 3 » #72%] LOT# - ﬁﬁ%ﬁp’ ' COUNTY_NAME ?'Jéﬁ B
Bt "™(FD3:COUNTY NAME—TAX RATE) » ﬁﬁ@ partial dependency » T
ﬁ"“ﬁ 2NF 8 > 55 %’[J’#)(b)ﬁlfl LOTS1 = LOTS2 E\'Hﬁ“ﬁ 2NF I -

Third Normal Form (3NF)

Def . (transitive dependency ; YE724f %) : AFD X—Y is a transitive dependency
if there exists a set of attributes Z that is not a subset of any key of R, and both
X—Z and Z—Y hold.

[71U[1%:% Figure 14.10 (b), ['I SSN—DNUMBER * f| DNUMBER—
DMGRSSN » #&7256 4 £ SSN—>DMGRSSN > 35 DNUMBER 3~ZEEMP_DEPT
v key » 9P ALE key pu="& 7 25 (kL transitive dependency ©

Def.(3NF) : A relation schema R is in 3NF if it is in 2NF and no nonprime
attribute of R is transitively dependent on some key.

AN E%,J?Zﬁﬂiﬁ'ﬂ kL 2NF(since no partial dependencies on a key exist) » [FI[R:F
i DNUMBER i b JEFEHI{AE SSN £ DMGRSSN, DNAME - FFIV:"'H* AP
3NF Y% - U300 [14.10(b) K E #hi+ 3NF 4 (=53 455 ED1 » ED2
™ f[ﬁ'?fj?’f}% ’ EJ[J?I H”ﬁ“ﬂlﬁ} 3NF {JE¢ o ¥, ¥~ ED1 % ED2 > ﬁﬁl [HERCS
‘JAf% 14.11(b) » ['1 FD4 #I AREA %L nonprime attribute ' 7k PRICE » ¢} &
& JEFLARIA jg'[}{ij’i,ff 7 3NF =4 [~ 57 H[5Y Figure 14.11(c). LOTS1A ¥
LOTSIB Py % - F 4 W5 3NF it -

.The definition of 3NF is equivalent to the following :

For each FD X—Y in R, either

(a) X is a superkey of R or

(b) Y is a prime attribute of R.

This definition can be applied directly to test whether a relation schema is in 3NF,
it does not have to go through 2NF first.

(=+) Boyce-Codd Normal Form (BCNF)

Def.(BCNF) : A relation schema R is in BCNF if for each dependency X—Y
inR, X must be a superkey in R.(. [3NF [[I "Y is a prime attribute of R"

Y ﬁUEI Z)
See F 1gure 14. £ for an example.
(2) LOTS1A (PROPERTY_ID#, COUNTY NAME,LOT#, AREA)
FD1 4 3
7 0%, | | A
FDA |
AEJR COUNTY_NAME L LOTS1A ¥ prime attribute ([
COUNTY_NAME+LOT#£% secondary key) » (/P AERA 1 fL LOTS1A
[superkey » FD5 filjg L 3NF - [fl55%~ BCNF - i }-{—J LOTSI1A J; ZI%[JF‘W\
SII {l BCNF [%
LOTS1AX (PROPERTY ID#, AREA, LOT#)
LOTSIAY (AREA, COUNTY NAME)
AREA, LOT# £} Secondary key °
F2¥H PR R (Al,A2, A3, A4, AS, A6
[*FTJ FDI (l | 4 4 4)

Fpp2 L 4 '

FD3
FD4 S

FD2 pLETZ T3 {*RIfitp~y > FD3 RLoy= -4 [“RIfitpy > FD4 [l[]Ff BCNF
E[fjﬁ%f[ﬁﬂ o

The decomposition of schema to comply with BCNF may introduce the
violation of dependency preservation, which dictate that a FD now spans two
or more relations. For instance, (COUNTRY_ NAME, LOT#)-> AREA now
cross two relations (LOTS1AX, LOTS1AY) in the new schema. Therefore,
some practitioners oppose to the decomposition for BCNF.

(#) Fourth Normal Form (4NF)

4NF is based on a concept called multi-valued dependency (MVD) .

In a relation, the value of some attribute may determine a set of values in
another attributes, regardless of the values in the remaining attributes. See
EMP shown in Figure 15.4(a).

Def. (multivalued dependency): a MVD, denoted as XY specified on
relation schema R, states the following condition holds:

If two tuples t1 and t2 exist in r(R) such that t1[X] = t2[X], then two tuples
t3 and t4 should also exist in r with the following properties:

t3[X] = t4[X] = t1[X] = t2[X].

t3[Y]=t1[Y] and t4[Y] = t2[Y].

t3[R-XY] = t2[R-XY] and t4[R-XY] = t1[R-XY].

Whenever XY, we say X multivalued determines(multidetermines)Y or
Y is multivalued dependent on X.

Note that according to this definition, whenever XY holds in R, so does
X—>(R-XY). Let R-XY be Z. Hence X—Y implies X—Z, and sometimes

written as X>Y | Z.

AMVD X—>Y in R is called a trivial MVD if (a) Y is a subset of X or (b)
XUY=R.

A nontrivial MVD in a relation implies the existence of redundancies. See
Figure 15.5.

Def.(4NF) : A relation schema R is in 4NF with respect to a set of
dependencies F if, for every nontrivial multivalued dependency XY in F+,
X 1s a superkey for R.

Note that a schema is BCNF if it is 4NF because functional dependency is a
special case of multi-valued dependency.

See Figure 15.5 again to see how 4NF saves space.

Notice that relations containing nontrivial MVDs tend to be “all key”
relations.

Figure 15.4 (¢) is in 4NF since it does not have nontrivial MVDs.

() Fifth Normal Form (5NF)

5NF is based on a concept called join dependency.

Check whether or not SUPPLY in Figure 15.4(c) can be equally represented
by the three relations R1, R2, and R3 in Figure 15.4(d).

A join dependency (JD), denoted as JD(R1, R2, ..., Rn) specified on a
relation schema R, states r(R) = r(R1) * r(R2) * ... *r(Rn).

A JD(RI, R2, ..., Rn) is trivial if one of the relation schema Ri is equal to
R.

Def.(5NF): A relation schema R is in SNF (or called project-join normal
form) with respect to a set F of dependencies if, for every nontrivial join
dependency JD(R1, R2, ..., Rn) in F', every Ri is a superkey of R.
Discovering JDs in practical databases with hundreds of attributes is
difficult; hence current practice of database design pays little attention to
SNF.

-+ « XML

(—) Introduction
® A XML document is a text file with XML markups. The file name usually ends

with the extension .xml.
® XML stands for extensible markup languages.
Unlike HTML, XML allows authors to create new tags.

® XML documents focus on the content of the data. The presentation of the data is

not its concern. Usually, a separate .css (cascading style sheet) or .xsl (extensible
style sheet language) file is used to specify the presentation of a XML document.
® Example letter.xml and usage.xml:

<?xml version="1.0" ?>

<I-- Fig. 5.6: letter.xml -->
<!I-- Business letter formatted with XML -->
<letter>

<contact type="from">
<name>Jane Doe</name>
<address1>Box 12345</address1>
<address2>15 Any Ave.</address2>
<city>Othertown</city>
<state>Otherstate</state>
<zZip>67890</zip>
<phone>555-4321</phone>
<flag gender="F" />
</contact>
<contact type="to">
<name>Jane Doe</name>
<address1>123 Main St.</address1>
<address?2 />
<city>Anytown</city>
<state>Anystate</state>
<zip>12345</zip>
<phone>555-1234</phone>
<flag gender="M" />
</contact>
<salutation>Dear Sir:</salutation>
<paragraph>
It is our privilege to inform you about our new

database managed with <bold>XML</bold>
. This new system allows you to reduce the load
on your inventory list server by having the client
machine perform the work of sorting and
filtering the data.

</paragraph>

<paragraph>The data in an XML element is
normalized, so plain-text diagrams such as /---\ |
| \---/ will become gibberish.</paragraph>

<closing>Sincerely</closing>

<signature >Ms. Doe</signature>

</letter>

<?xml version = "1.0"?>
<!-- Fig. 5.5 : usage.xml -->
<!-- Usage of elements and attributes -->

<?xml:stylesheet type = "text/xsl|" href = "usage.xsl"?>
<book isbn = "999-99999-9-X">
<title>Deitel's XML Primer</title>
<author>
<firstName>Paul</firstName>
<lastName>Deitel</lastName>
</author>
<chapters>
<preface num = "1" pages = 2">Welcome</preface>
<chapter num = "1" pages = "4">Easy
XML</chapter>
<chapter num = "2" pages = "2">XML
Elements?</chapter>
<appendix num = "1" pages =
"9">Entities</appendix>
</chapters>
<media type = "CD"/>
</book>

(Z) Parsing XML documents

® An syntactically correct XML document is called well-formed.

® There are many XML parsers freely available on the internet.

® [E 5.0 has a built-in XML parser (called msxml) that parses and renders a XML
document.

® A parser can parse an XML document into a tree structure stored in main
memory for further manipulation. A noted model for such tree structures is called
DOM (document object model). Many parsers are written by Java, Perl, VB, etc

and can be integrated into your application programs.

(=) Ingredients of XML documents

® XML documents contain all visible characters.

® There are five reserved characters: &, <, >, *, and ““. To use these characters,
you must use & (for &) <(for <) > (>) ' (‘) "(*) instead.

® Each element may have a value and a set of attributes.

® [fa string is not to be parsed by the parser, simply put it inside a CDATA section.

® Example

<?xml version="1.0" ?>
<!-- Fig. 5.7 : cdata.xml -->
<!-- CDATA section containing C++ code ~ -->
<book title="C++ How to Program" edition="3">
<sample>// C++ comment if (this->getX() < 5 &&
value[0] '= 3) cerr <<
this->displayError();</sample>
<sample>
<![CDATA[

/| C++ comment
if (this-=>getX() <5 && value[0]!=3)

cerr << this->displayError();

11>
</sample>
C++ How to Program by Deitel & Deitel
</book>

(PY) Namespace

® To prevent naming collisions for synonyms, XML provides namespace
mechanisms.

® A namespace has a prefix that can be prepended to element and attribute names
to prevent potential confusion.

® Each namespace prefix is tied to a uniform resource identifier (URI) that
uniquely identifies the namespace.

® A common practice is to use Universal Resource Locators (URLs) for URIs.

<?xml version ="1.0"?>
<!-- Fig. 5.8 : namespace.xml -->
<l-- Namespaces -->
<directory xmlns:text = "urn:deitel:textInfo"
xmlns:image = "urn:deitel:imagelnfo">
<text:file filename = "book.xml]">
<text:description>A book list</text:description>
</text:file>
<image:file filename = "funny.jpg">
<image:description>A funny picture</image:description>
<image:size width = "200" height = "100"/>
</image:file>

</directory>

(=) Document Type Definition (DTD) Introduction

® A DTD is used to define an XML document’s structure.

® To ensure effective B2B transactions, it is strongly recommended to use DTD to
ensure document conformity.

® An XML document is considered valid if it conforms to its associated DTD.

® Anexample

<?xml version ="1.0"?>

<!-- Fig. 6.1: intro.xml -->

<!-- Using an external subset -->

<IDOCTYPE myMessage SYSTEM "intro.dtd">
<myMessage>

<message>Welcome to XML!</message>

</myMessage>

<!-- Fig. 6.2: intro.dtd -->

<l!-- External declarations -->
<IELEMENT myMessage (message)>
<IELEMENT message (#PCDATA)>

® PCDATA stands for parsable character data.
® DTD allows the definition of multi-valued, composite attributes.
B+ indicates that an element can repeat at least one time.
B *indicates that an element can repeat at least O time.
B ?indicates that an element can optionally appear. If used, appears only
once.

® For example: mixed.xml

<?xml version = "1.0" standalone = "yes"?>
<!-- Fig. 6.5: mixed.xml -->
<!-- Mixed content type elements -->
<IDOCTYPE format [
<!IELEMENT format (#PCDATA | bold | italic)*>
<!IELEMENT bold (#PCDATA)>
<!ELEMENT italic (#PCDATA)>
>
<format>
This is a simple formatted sentence.
<bold>I have tried bold.</bold>
<italic>I have tried italic.</italic>
Now what?
</format>

() DTD Attribute Declarations

® Use ATTLIST to declare attributes.

® Attribute defaults:
B #REQUIRED: must appear
B #IMPLIED: If missing, any value can be used.
B #FIXED: the value is fixed.

Tokenized attribute type

B [D: this attribute uniquely identifies an element.
B [DREF: a pointer to elements with an ID attribute

For example

<?xml version ="1.0"7>
<!-- Fig. 6.8: IDExample.xml

<!-- Example for ID and IDREF values of attributes -->

<IDOCTYPE bookstore [

>

<IELEMENT bookstore (shipping+, book+)>

<IELEMENT shipping (duration)>

<IATTLIST shipping shipID ID #REQUIRED>

<IELEMENT book (#°CDATA)>

<IATTLIST book shippedBy IDREF #IMPLIED>

<!ELEMENT duration (#PCDATA)>

<bookstore>

<shipping shipID = "s1">
<duration>2 to 4 days</duration>
</shipping>
<shipping shipID = "s2">
<duration>1 day</duration>
</shipping>
<book shippedBy = "s2">
Java How to Program 3rd edition.
</book>
<book shippedBy = "s2">
C How to Program 3rd edition.
</book>
<book shippedBy = "s1">
C++ How to Program 3rd edition.

</book>

</bookstore>

Enumerated attribute types

<!ATTLIST person gender (M | F) “F”>

<IATTLIST book reference NOTATION (JAVA | C) “C”>

<INOTATION C SYSTEM
http://ww. addi son-wesl| ey. con’ books/ C TOC. ht n»

® Attribute type NMTOKEN (name token) is a value consisting of letters, digits,
periods, underscores, hyphens and colon characters.
<IATTLIST sportsClub phone NMTOKEN #REQUIRED>

® For example

<?xml version ="1.0"7>
<!-- Fig. 6.14 : whitespace.xml -->
<!-- Demonstrating whitespace parsing -->
<IDOCTYPE whitespace [
<IELEMENT whitespace (hasCDATA,
hasID, hasNMTOKEN, hasEnumeration, hasMixed)>
<!IELEMENT hasCDATA EMPTY>
<IATTLIST hasCDATA cdata CDATA #REQUIRED>
<!ELEMENT hasID EMPTY>
<!ATTLIST hasID id ID #REQUIRED>
<!IELEMENT hasNMTOKEN EMPTY>
<!IATTLIST hasNMTOKEN nmtoken NMTOKEN #REQUIRED>
<IELEMENT hasEnumeration EMPTY>
<IATTLIST hasEnumeration enumeration (true | false)
#REQUIRED>
<IELEMENT hasMixed (#PCDATA | hasCDATA)*>
>
<whitespace>
<hasCDATA cdata=" simple cdata "/>
<hasIDid=" 1i20"/>

<hasNMTOKEN nmtoken =" hello"/>
<hasEnumeration enumeration=" true"/>
<hasMixed>

This is text.
<hasCDATA cdata =" simple cdata"/>

This is some additional text.

</hasMixed>

</whitespace>

® An alternative to DTDs is schamas. It is expected that schemas will replace
DTDs as the primary means of describing document structure.

® Schema uses XML syntax.

» Enhanced ER Model (Chapter 4)

The EER(Enhanced-ER)model includes all the modeling concepts of the ER
model. In addition, it includes the concepts of subclass and superclass and
the related concepts of specialization and generalization, and the concepts
of category (the union of objects of different entity types) . FL 4 F » HiEhL
- ER model %+ ’Jfﬁﬁﬁ[ﬁjﬁlﬁ\ o

(—) Subclasses > Superclasses ° and Inheritance

Some entities in an entity type (say A) can be grouped to form another entity
type (say B). We call B is a subclass of A, and A is a superclass of B.][I
EMPLOYEE fus5 Ei[*[i* 77 7% SECRETARY, ENGINEER, MANAGER,
TACHNICAN, SALARIED EMPLOYEE, . %ﬁ JIRYEL If“ 53R Y7
£% subclass » EMPLOYEE 7 £% superclass o [F<j class i []
superclass/subclass relationship (i lij?i class/subclass relationship) > |
Eé'J? L[IS-A relationship °

A subclass member is the same as the entity in the superclass. An entity
cannot just exist in a subclass without being a member of its superclass.

An entity can be included optionally as a member of any number of
subclasses. [J]J[1% — engineer &7 Eﬁ BPF" ENGINEER ~
SALARIED_EMPLOYEE [yl subclass °

It is not necessary that every entity in a superclass be a member of some
subclass. See Figure 4.2.

A member of a subclass inherits all the attributes of the entity as a member
of the superclass. The entity also inherits all relationship instances for
relationship types in which the superclass participates. (subclass =

superclass fi J’E}’[&f[l%ﬁ FERR)

(Z) Specialization and Generalization

Specialization (’ﬁj’\ﬂz (=5 5395 B{l subclass (UM) is the process of
defining a set of subclasses of an entity type, based on some distinguishing
characteristic ((&3 Effjlif TRT) .

For example, {SECRETARY, ENGINEER, TECHNICIAN} is a

specialization of EMPLOYEE ((&~ {=JiJ|[5}) , while

{SALARIED EMPLOYEE, HOURLY EMPLOYEE} is another

specialization of EMPLOYEE (fﬁﬁ?}’ﬂ =4 7J. See Figure 4.1.

Two main reasons for including class/subclass relationships and

specialization in a data model:

(ffu™] subclass fRIA)

B Certain attributes may apply to some but not all entities of the
superclass entity type. (LR FUF] superclass f Ff'z[STEERFT 0
subclass FERLESTE H E] AU AR o

B Some relationships types may be participated in only by entities that are
members of the subclass. (5 ﬁ% AR UL [subclass [{45

CESK
® Attributes that apply only to the subclass, are called specific attributes (or
local attributes). A subclass can participate in specific relationship types.
® The specialization process involves (ﬁ TR (=R & ?F)
B Define a set of subclasses
B Associate additional specific attributes with each subclass.
B Establish additional specific relationship types between each subclass
and other entity types. (foll=#i3 £ subclass * 13? FIE 1 subclass
Ay EL P entity F | IRV
® Generalization (— &> ; FEFE[=py E[F[JE'“EE) refers to the process of
defining a generalized entity type from the given entity types. (2 ¥#F %
Figure 4.3 Generalizing CAR and TRUCK into VEHICLE)
® See Figure 4.1 shows how we represent a specialization diagrammatically in
an ERR diagram (SECRETARY fUgf% % 5 {3 [» 2] EMPLOYEE
VAT FE’{}’[‘C‘C"JD FEl specific attribute - TECHNICAN » ENGINEER %

Rl - 910 EMPLOYEE) B (1o f A)

(=) Three Constraints on Specializations
S ‘iﬁ’fl’?ﬁ:ﬂ‘ F—TF@UEU constraints [F[H?;Fl‘ TeH |Z]] generalization 57F] - o [R5
gf1%E specialization [I¥ Fflﬂlﬁ i | constraints
Constraints on Specialization

® Defining Constraints :
B predicate-defined subclasses: a predicate on the attributes of superclass
is used for determining the subclasses.(HifEI" | 5 Lg% mY {7 NG
Y — [subclass » #7457 condition-defined subclass) Most
predicate-defined subclasses are attribute-defined. i []/"= predicate
RLETE - g ir’?ﬂg’?‘y o PR B —’ﬁj F#{pY defining attribute °
¥ Figure 4.4. JEI FIT JobType % deﬁmng attribute °
B user-defined subclasses: Membership is specified individually for each
entity by the user. (E¥f] ’gy =1 %ﬁﬁﬂ— entity][—iﬁjﬂjt’F‘, EEURE|
IR
® Disj 01ntFness Constraints : Subclasses of the specialization are disjoint.
That is, an entity can be a member of at most one of the subclasses of the
specialization. (superclass [IV5Y E it 2Pt pl1— [subclass T [ﬁj’i@’i
Jﬁ”%lﬁr (it subclass)
Use ‘d’ symbol in the circle to denote disjointness constraint.
B Use ‘o’ for overlap (i.e. non-disjoint) constraints.(2 #Z 4 Figure 4.4.
& Figure 4.5)
B~ {[{ attribute-defined i fﬁj FR[= M ERLE | disjointness constraint PR ET
defining attribute hLF!fifi -
® Completeness Constraints :
B A total specialization constraint specifies that every entity in the
superclass must be a member of some subclass in the specialization. It

is denoted by a double line in the EERD. (= ¥#F % Figure 4.1)

B A partial specialization allows an entity not to belong to any of the
subclasses. It is denoted by a single line in the EERD.(%= ¥#F %4 Figure
4.1 % Figure 4.4)

B A generalization superclass usually is total, because the superclass is
derived from the subclasses and hence contains only the entities that are
in the subclasses. (2 ¥#F 4 Figure 4.3)

Disjointness and completeness constraints are independent. Tﬂfj_k P

TR -

B Disjoint, total.

B Disjoint, partial.

B Overlapping, total.

B Overlapping, partial.

Rules for deleting or inserting entities to a specialization:

W {¢superclass PII#— WY E1GE () » =% (ﬁ?}’?‘/ EYARTE AT
subclass [1155 EY

B Inserting an entiJ[:y in a superclass implies that the entity is mandatorily
inserted in all predicate-defined (or attribute-defined) subclass for
which the entity satisfies the defining predicate.

B Inserting an entity in a superclass of a total specialization implies that
the entity is mandatorily inserted in at least one of the subclass of the
specialization.

Specialization Hierarchies and Lattices

A subclass may itself have further subclasses, forming a hierarchy.

In case of multiple inheritance, specialization lattices may be formed.

See Figure 4.6 for a lattice, in which a subclass

(ENGINEERING MANAGER) can be a subclass in more than one
class/subclass relationship.

In a specialization lattice or hierarchy, a subclass inherits all attributes of
superclasses all the way to the root. (¢ Eis&ps T | EpS{I ¥ superclass
PRI B 5 AR pTE HL Y superclass (ORI 7 - [EE
%ﬁ’ R E AR AL ETF superclass FILJ’ET[EBFYEJI’T% FLBE YY)
See Figure 4.7. GRADUATE_STUDENT #% = STUDENT * PERSON [*
Bt - HF) [#Ef1% - RESEARCH_ASSISTANT A%
STUDENT_ASSISTANT, STUDENT, EMPLOYEE * PERSON [V} >
HE e -

A subclass with more than one superclass is called a shared subclass ({77[':
STUDENT ASSISTANT). If no shared subclasses existed, we would have
a hierarchy rather than a lattice.

(PY) Categories

In the subclass/superclass relationships, a subclass either has a single
superclass or has multiple superclasses with similar properties.

Sometimes, there is a need for grouping a subset of entities from different
entity types. See Figure 4.8. (The OWNER is a subclass of the UNION of
the three entity sets of COMPANY, BANK, and PERSON)

A category is a subset of the union of its superclasses, whereas a multiple
inheritance is a subset of the intersection of its superclasses.

it EERD f[1> I']- f[”[EH[?'[’@' (= "U" PR T TEGHHY category B
superclasses s = El] 1/ :Jﬁf'% SETET ('set union operation) °

q%.ﬁ[EJi' category :
(a)hierarchy inheritance (b)multiple
inheritance
OWNER PERSON COMPANY
PERSON COMPANY OWNER

(a) OWNER 2 (PERSON U COMPANY) (b} OWNER < (PERSON N
COMPANY) » &7 =7k 73 & category [V i » /El¥ category f A
OWNER < (PERSON U COMPANY) AR 7 -

The attributes of a category is the union of the attributes of its superclasses.
However, in contrast to the multiple inheritance, no entity in a category has
values for all attributes.

Compare categorization with multiple inheritance and specialization. See the
following figure:

A B A B 8

C C A B

e N CcAm B Codul

A category can be total or partial. See Figure 4.9.
Y[category £ total i Jﬁf' P Hip#A S I H] specialization (Z/Dfﬁ%\‘ (a)):

[class 5! F|FIBIED LSR5 E IR BURHE - 2
specialization » N[categorization §i{; "ér[°
® See Figure 4.10 for a complete example.

(=) Conceptual Object Modeling using UML class
diagrams

® UML (Universal Modeling Language) defines several diagrams that can be
used in the process of object —oriented software design.

® Among the UML diagrams, class diagrams are similar to EER diagrams in
many ways. Class diagrams intend to capture the object classes and their
relationships in the context of an application. Therefore, database classes, or
called persistent classes (7 <&}l ; §L¢ 2H[)), can also be described by

EER diagrams.

® Correspondence between EER diagrams and UML class diagrams.

B Entity vs. Object.

B Entity Type vs. Class.

B Each class comprises three parts - class name, attributes, and operations.

(attributes i’ B[’Tﬁb’?ﬁ L fifii 17 EER ['[12¥] operations).

B A composite attribute 1S modeled as a structured domain. See the Name
attribute in EMPLOYEE class in Figure 4.11.

B A multivalued attribute is generally modeled as a separate class. See the
LOCATION class in Figure 4.11.

B Relationship types are called associations in UML, and relationship
instanes are called /inks. (In UML, a relationship attribute is called a
link attribute)

B An association may or may not have a name.
€ (min, max) notation is used to specify relationship constraints

(are called multiplicity in UML), though the placement of

multiplicity is opposite compared to ERD. (%74 LI%‘[' 315

4.11 fl1pv WORKS_FOR R {7:pv ‘if“'é‘i'[ﬁ% » [H V (min, max)#{

FESIEROE) T UML 1> A= ffaf kA0, > = 1"

AL kR HR)

€ UML has two types of relationships : association and aggregation.

® Aggregation is meant to represent a relationship between a
whole object and its component parts. However, with respect
to when to choose aggregation or association is not clear.

YBR[411 [I1F ™ FORT)

® Weak entities can be modelled as a qualified association(or
qualified aggregation). See Figure 4.11

o Dependent Name (partial key) under EMPLOYEE, is
placed in a box attach to the owner class.

B UML uses blank triangulation to indicate a disjoint specialization and
filled triangulation for an overlapped specialization. See Figure 4.12.

(7) EER to Relational Mapping

Specialization Mapping : {S1, S2, ..., Sn} is a specialization of C. Let k be
the primary key of C. There are four approaches for mapping.

1.

A relation for C with primary key being {k} and attributes being C’s
attributes. A relation for each Si with primary key being {k} and
attributes being S’s attributes. (}-{‘—’]’ Cpuz f[Ty — Tﬁﬁfﬁﬂ‘ﬁ I
k R IR > SR EHD]'ﬁ subclass » A {fal [g opr - KRR)RS J
ﬁrﬁﬁﬁﬁg [, = ﬂ” | k ERE A= e 2 HUEE &;ﬂ 4.4 }vqﬁg‘[[9.2.a)
his option works for any constraints on the specialization:
disjoint or overlapping, total or partial.
A relation or each Si with primary key being {k} and attributes being S’s
attributes union C’s attributes. (}Iﬁ]’ = {li subclass > B“}‘:JFI EHEpEp - C
NES Iflfffgj’iﬁﬁ&ﬁwgu zﬁéﬁ%ﬁﬁg [”fﬂ[| k ERE IV frgg > 22
A N q%‘[[4.3 }vq%‘[‘ 9.2b
This option is suitable only for both the disjoint and total
constraints, and is not good for overlap constraint.
A single relation with key being {k} and attributes being the union of C
and all Si, and a type attribute. The type attribute is used to indicate to
which subclass a tuple belong. (5f C » £J {f subclass o = FgE > F "J[I
'—?#H[J tuple FEy subclass VT EEfE > fERY— TJTG?\U Fror]
= R 2 UFARE 44 Lﬁ[9.2.c» BIfEgHEEL JobType » JobType
¢ HERLC - (RS » 97T o4)
This option can be used only for disjoint constraint.
A single relation with key being {k} and attributes being the union of C
and all Si, and several type attributes, one for each subclass. A type
attribute is used to indicate whether the tuple belongs to the associated
subclass. (}{ﬁj’ C » & {[# subclass fiv = jft[Fg’j’[i [ERERS <1 tuple -
Bl]] subclass PATe | [t ff[| FIRE B > qEsY — Iﬁgjﬁ?ﬁﬁfﬁ BN § vai
ES T ERTE qﬁ[' 45 0.2 » H RIS K Rt
[MFlag #{! PFlag)
This option is for a specialization whose subclasses are overlapping,
but will also work for a disjoint specialization.

° L : O

S S2 {3

OO

1 A2 A3 A4 A5 A6
(A Friar 1 ’F' /pbifﬁﬁtﬂiﬁurﬁ T E Iy[ﬁ\ :
i /FTF‘”‘@E' :
C{AA AB}
ST{AA, Al, A2}
S2{AA, A3, Ad)
S3{AA, A5, A6}
k2 /FT;J Bz
Sl{AA AB, Al, A2}
S2{AA, AB, A3, Ad}
S3{AA, AB, A5, A6}
“Ufi 3 - /FTJT'”’LF.JEI :
C{AA AB, Al, A2, A3, A4, A5, A6, At}
At Ei#. subclass type [IV type attribute.
ik 4 VL
C{AA AB, Al, A2, A3, A4, A5, A6, Atl, At2, At3}
Atl, At2, At3 Ei%7. subclass type [IY type attribute, [EfL
f.L Boolean attribute °
B tuple F{AA, . ey ey s ey e 1,0, 1Y H
[l S1 A1 S3 -

T R A2 HiE 4 2R TR(multiple relation) - [7% 3 A1 4 [l 2+ HE-
[%fi‘i?f%(single relation) s T g R E £ tuples ﬂﬁgﬁiﬁ PRI s
£ subclass » iy f1ZR S AR L 4 i IJ[T:HI/ 0

® (Category Mapping

B A relation is created for a category. It is customary to specify a new key
attribute, called surrogate key. (See Figure 9 4. and Figure 4.8)

m il F'JF:EJ entity type F"T?FT? H*J category F[%“Lfﬁy‘ 15
surrogate key Hi (=t = B JZ}‘\&J it superclass IV "”“FCWJE F},[i
_FIF=surrogate key FJ' [EEl foreign key (190 PERS
COMPANY K OWNER) ° ([}l > | category [superclass —;' £ ﬁ[

Jpy = %I%E »WE T Aol FTE S (W surrogate key (Y

REGISTERED VEHI £E CAR, TRUCK & OWNS) -

" ~ OLAP (supplement and Chapter 26)

(—) Introduction

The following materials are extracted from “Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,”
Data Mining and Knowledge Discovery 1, pp. 29-53, 1997.

OLAP (One-Line Analytical Processing) is mainly used for data analysis
applications.

Data analysis is an iterative procedure that involves four steps (€| 55 #7f%

)
]

Formulating a query for extracting relevant data. (f§— f[ﬁ'*?}’%{ﬁ[’g[?ﬂ
R

Extracting the aggregated data into a file or table. (£ er 75— (%
)

Visualizing the result in a graphical way. (}{’-”J’ PR AN q*?ﬁ”% [~ =tFA
)

Analyzing the result and formulating a new query. (73 FraF N < F | EEY
BRI E F AR P i)

MS Excel is a visualization/analysis tool.
Data analysis tools view the dataset as an N-dimensional space. See the
following figure:

A &

th &

hE

sl

® Relational systems model N-dimensional data as a relation with N-attribute
domains, where some attributes are viewed as dimensions and others
represents measurements.
® Sce Table | in Page 31, Time(UCT), Latitude, Longitude, and altitude are
dimensions. Temp. and Pres. are measurements.
® The following figure shows dimensions and measures:
Dimension Attributes Ieasure Attributes
7
H # Hh &= R Sales
—H Bk COFFEE 500
® IFErRIPIOREE 2 B Py
B Multi-dimensional OLAP (ji{*% MOLAP).
B Relational OLAP (7 ROLAP)
® {7 ROLAP H=¢ » [[| e ' & 5% SALES{*| {5 » B9l » FEHT >
ARG RN HI ’ [@%H%ﬁs] {3 CEE 8 72 » JII) SQL
FERSYIS S TIHHE U e F’?Zl‘»:g‘m{v[
SELECT J 7y SUM(I%ﬁ
FROM SALES
GROUPBY *|{7;
® Data analysis tools extensively use dimensionality reduction (aggregation)
for better comprehensibility. The relational systems relies on aggregate
functions and GROUP BY operator to support aggregation. For example,
the following query reports the average temperature for each reporting time
and altitude -
SELECT Time, Altitude, AVG(Temp)
FROM Weather
GROUP BY Time, Altitude;
® SQL's aggregation functions are very popular (7] ¢ Fif!) . TPC-D query
set has one 6D GROUP BY and three 3D GROUP BYs. See Table 2 for
the presence of aggregate functions in SQL.
® In addition to COUNT, SUM, AVG, MIN, MAX, many systems provide
extensions to aggregate functions such as median, standard deviation, center
of mass, angular momentum, etc.
® Some systems allow users to add new aggregate functions in a way such as

the following : (Informix Illustra system)

1. Init (&handle): Allocates the handle and initializes the aggregate
computation. (e.g., SUM = 0; COUNT=0)

2. Iter (&handle, value): Aggregates the next value into the current

aggregate. (e.g., SUM = SUM + Salel; COUNT=COUNT+1)
3. Value = Final (&handle): Computes and returns the resulting aggregate
by using data saved in the handle. (e.g., Value = SUM/COUNT)
® Red Brick system, an UNIX OLAP vendor, add the following aggregate

functions :
B Rank(attribute): Returns the rank of a tuple according to its value on
“attribute”.

B N-tile(attribute, N): Divide the tupes into N categories according to
their values on “attribute”. This function returns a tuple’s category rank
(1...N).

Ratio To_ Total(attribute): Return the ratio of the attribute value to the
sum of attribute values of all tuples.

B Cumulative(attribute): Return the sum of all attribute values so far in an
ordered list. (/[H* =" EH5 [l VA1)

B Running Sum(attribute, n): Return the sum of the most recent n values
in an ordered list. ((A Th 5 i n i il 1 #1)

B Running Average(attribute, n): Return the average of the most recent n
values in an ordered list. ({#-3s £ TS50 iy n {lfl V AIpy 1)

o
ESOE
A1A2 -+ | Eank(A1) |MN-tle(d1.3)|Ratio-to-Total | Cumulative | Eunning-=um
(A1) (&1) (81,3
2 1 2100 B 2
4 2 51100 12]
20 8 3 20100 83 50
15 & 2
1 1 1
8 & 2
4 3 1
a0 9 3
17 g 3

(Z) Problems with GROUP BY

There are three main problems: (1) histograms, (2) roll-up totals and sub-totals for
drill-downs, (3) cross tabulation.

Histograms

® A histogram is a figure that shows the historical change of something.
® For example, one may like to see the highest temperature of nations across
days. The following query serves this purpose:
SELECT day, nation, MAX(Temp)
FROM Weather

GROUP BY Day(Time) AS day,
Nation(Latitude, Longitude) AS nation;

® However, in current standard SQL(SQL92), the above query is not valid and
has to be modified to the following nested query :
SELECT day, nation, MAX(Temp)

FROM (SELECT Day(Time) AS day,
Nation(Latitude, Longitude) AS nation,
Temp
FROM Weather
) AS foo

GROUP BY day, nation;
Roll-up Totals/subtotals for drill-down

® Reports commonly aggregate data at a coarse level, and then at successively
finer levels. (Roll-up e¥R[VY[R - FIY0 | TR IRy 2 |5 & pueeR]
Drill-down : ¥R V3F155 - (U1 eXR[AF0T R % ek » - 487 ["Eiﬁﬁxﬁjﬁ
I} dimension e = {FHA)

® See Table 3a, in page 35 for data representation. The representation of Table
3a is not relational because the empty cells cannot form a key. J[1§*1d-dx £,
Table 3b [1U . VBl » (175 LA 15V 14D -

® Note that Table 4, though clear, introduce too many columns. For example,
when one pivots on two columns with M and N values, the resulting pivot
table has NM values.

® Another simple rollup can be seen in Table 5a. Sales summary. (J[I™™ %)

® Table 5a can be formed by the complicated SQL statement shown below. (-
Fpl I[E{Efé%u S F YT SQL A E Y o [HIFFE R IER T F
FL N [dimension EJ[J%ﬁN (it UNION)
(SELECT 'ALL',"ALL', 'ALL', SUM(Sales)
FROM Sales
WHERE Model = 'Chevy")

UNION
(SELECT Model, 'ALL', 'ALL', SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model)
UNION
(SELECT Model, Year, 'ALL', SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model, Year)
UNION
(SELECT Model, Year, Color, SUM(Sales)

FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model, Year, Color)

I query puadifil 3L - filjigl"] Color firhraflfiuef] » P FAr.

Model Year Color Uni
ts

Chevy ALL Black 135

Chevy ALL White 155

BIYS LY SQL A N FUBSAFHTIEE S A Sb Y RIRH

UNION
(SELECT Model, 'ALL', Color, SUM(Sales)
FROM Sales

WHERE Model = 'Chevy'
GROUP BY Model, Color)
[] i/l:[g}‘;{r\l Bl |5L—J\ ’ [) - query E[f}%;(l{ Iijf ﬁ@ IF%[I |5LI\5{ °

Cross-Tabulation (Cross tab)

(

® Rollup is asymmetric. The symmetric aggregation result is a table called
cross-tabulation.
® A cross tabulation imposes no order on dimensions, e.g.

Ford 1994 1995 Total
Black 50 85 135
While 10 75 85
Total 60 160 220

® MgV SQL & roll-up » cross-tab fl T3 Y » I')—~ {6 7 cross
tabulatlon B ERIN] 64 TpY UNION i fl 2 64 [[ﬂ FlpY GROUP BY
JELRT >} e AR 3 - ”Jiﬁtiﬁp] i“*[64 % EH“[[l 64 M EE
ﬁ’ﬁﬂd*FWﬁF ﬂ”m@ﬁﬁ%*ﬁﬁﬁﬁwn%

® Since rollup and cross-tab are so important, it’s better to propose new SQL
operators, which enable efficient query optimization.

—) CUBE and ROLLUP operators

® To enable efficient OLAP applications, two new operators: CUBE and
ROLLUP are proposed to conduct cross tabulation and roll up respectively.
® With CUBE operator, the following query can be formed :
SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY CUBE
Day(Time) AS day,
Country(Latitude, Longitude) AS nation;
® [fthe cardinality of N attributes are C,, C, ..., Gy, then the cardinality of the
resulting cube relation is (C1+1)(Cy+1)...(C,+1).

7] : CUBE

Model Year Color
) 3) 3)
ALL
ALL
ALL

IF=relation 7% [(5+1)*(3+1)*(3+1)ETe v -

For rolﬁup and drill-down report, another operator ROLLUP is provided.
ROLLUP suites the applications with linear functional dependencies on
attributes, while CUBE is used for applications with independent attributes.
For example, one may want to rollup on week, month, and year.

ROLLUP = CUBE [it

P FRIY 1210 SQL #5 k53] {1] GROUP BY ROLLUP & GROUP
BY CUBE ' 1 [ﬁJ

Day _ Nation MAX(Temp)

ALL . .

ALL . . fili""] CUBE i % fiugyf]
ALL . . (17| CUBE % % [iUg]
. . ALL

. ALL ALL

ALL ALL ALL

. ALL .

"o u?ﬁ‘_? -EJ(_EL\F*SI °

Cumulative aggregates, like running sum or running average, work
especially well with ROLLUP because the answer set is naturally sequential
(linear) while the full data cube is naturally non-liner (multi-dimensional).
ROLLUP and CUBE must be ordered for cumulative operators to apply.

Combining CUBE and ROLLUP

Syntax :
GROUP BY [<aggregation list>]
[ROLLUP <aggregation list> |
[CUBE <aggregation list> |
E.g., See page 41 Figure 5. for the result of the following query.
SELECT Manufacturer, Year, Month, Day, Color, Model, SUM(price) AS
Revenue

FROM

GROUP BY
ROLLUP

Sales

Manufacturer

Year(Time) AS Year

Month(Time) AS Month,

Day(Time) AS Day,

CUBE Color, Model;

Decoration Attributes

A decoration attribute (£) in a query is an attribute that is

functionally dependent on the aggregate columns. J[J[I™ % [Jﬁ[A
1= hAE: GROUPBY =" [
SELECT DNUMBER, DNAME, COUNT()
EMPLOYEE
GROUP BY DNUMBER;
1 FIFAY SQL AL T }ﬁ'?ﬂ'—fﬂiﬁfé i (B4 Rl e kL SRR AT
o AL - SR (YR OB B R o
F 1) 804575 SELECT = gl -
TN Al tuple | FHBCESS o BEETTRTEAV I o PN AREAF N tuple Elfiﬁi?%f
REEIER 0 R -

DNAME J|5RAEAgf % » DNAME

FROM

Snowflake/Star Schema

1.

There are two kinds of tables : a fact table and a set of dimension tables.

N\

Oid

District

Region

Nation

m

(Miirmnnancinn Takla)

Bid

Sid

Oid |« o

e |Unit

Price

£
(o}

Bid, Sid, Oid,..= % dimension > Unit, Price £% measure °

Fact Table &/

I~
<

f

dimensions (refer to dimension tables) and measures °

FERLEL— [l snowflake schema » TISF = EL"JElfJ Dimension Table S [I[[£%
star schema o “JJiERLTE > f-Fact Table IV (=~ dimension & [& — {[
dimension table [![[} star schema > ¥ — dimension & % Fyll"] FpY
dimension table FY[! dimension table <" % table - [![[£], snowflake
schema -

One can apply CUBE on the fact table and ROLLUP on some dimension
tables.

Note that the granularities of a dimension may form a lattice (e.g., date ->
(week, month) -> year).

Data Warehouse

Data warchousing (Y[£] 7) can be described as “a collection of decision
support technologies, aimed at enabling the knowledge worker to make
better and faster decisions. (EH&* [(] j[d Sl ﬁl FARSRR > (P[RR
R ERR R s SR £ ﬂf B I e Sl
=)

See the overall data warehousing process in Figure 26.1 of the textbook.
Data warehouses are generally an order of magnitude larger than the source
databases, because it contains databases across time (7 '?EU ©rf]) and
departments. The sheer volume of data is likely to be i 1n terabytes

7= ~ Query Processing and Optimization
(Chapter 18 and 6)

(—) Conception

Query Processing Procedure
Typical steps when processing a high-level query (£} DBMS /=i Fﬁ 75)

query

l

SQL Parser (scanning,parsing,
and validatin V4 3 > Return error code

Syntax error

l Initial query tree

Query Optimizer
SRR S AuFEh s

l Optimized query tree

Query Code Generator

Code can be

Internal operations > Executed directly (interpreted mode)

o Stored and executed later whenever

Runtime Database Processor

v

Return query

Outline

® Basic Algorithms for Executing Query Operations (SELECT, PROJECT,
JOIN, and SET operations).

® Query Optimization (3‘[: e ['“”EJ e =)
W Heuristics * ARk]| » [P0k 00 ZERLR P
B Cost Estimate : EJ—m&’CW‘*‘JE,TL kA PR ﬁﬂiﬁkﬁ °

o ﬂﬁ ril_?“y‘[uﬁmiﬁh]}f TP RLERFERY i E’% EJ}fﬂ« f
T [FoRLY ﬁ%HJ%ﬁEJﬁ#I?I e RSN aﬁﬂﬁf IS IES il
A

(Z) Index Structure

® For details, see Chapter 6. (f4sIndex a0 - JHETR)
® There are basically two types of data structures for index, namely tree and
hash table.

Tree Based Index Structure

Each node is a page in disk. Thus, a node can contain multiple <key, pointer>
pairs.
It had better be balanced.
Space utilization must be high, even in the presence of many deletions.
Two commonly used tree data structures are B-tree and B+ tree. Nowadays, most
DBMSs use B+ tree to implement indexes.
For details on B-tree, please refer to the textbook.
2HHA 173 FI Figure 6.10 »
B-tree ﬁ’tﬁ?%ﬂﬁl%ﬁ?fﬁ 85 = ARl
B Tree pointer: }f’F',:—U B-tree E! H%ﬁ%ﬁﬁ@jﬁ'ﬁ@ il (RGO 4 -
B Data pointer: J5E[FHRIMB FVIAIRIN (RERITH) -
B secarch key field value: fFZEE(-

B+ Tree
® The structure of B+ Tree is shown in Figure 6.11 in page 176. Also see the

following figure

W

ey

' [400 | 1700 |) 1000
.
ST VL \ 5

""" 120 [0 | 300

H IS e
' 100, l \
I_gﬂ' ----- ; 3 ko (20 || 30 f7a oo || t20] | |—u 200| pos
e
I |
' i (o
_200.....
L' 20...

Figure 2

® B-+-tree (order p) fi Jﬁ%‘ﬁ o fJ 2 P
B Internal node: & %~ AErR il <P1 K1,P2,K2,....Pg-1,Kg-1>; q=p
® Tree pomter(;l) R 2] B+-tree £ 3 Internal node fiY st ¢} Leaf
node [i (%i b gh-) o
€ search key field value(Ki): fig=é(l (Ki-1<Ki) -
B Leafnode: & 5= vl ffl <<K1 ,Pri>,
<K2,Pr2>,. &q-l JPrg-1>, Pnext>; q = p
€ Data pomter(Record pointer ; Pri): ?"TU E PR Ak 3pAF Uf Vs @j (RHR
i) o
€ scarch key field value(Ki): fg=idE i (Ki-1 <Ki) -
¢ Next pointer(Pnext): f5Z[f/[fil B+-tree fu™ ~ i (7 FiE ¥) Leaf node
R (R)
® ¥ f '”f&m%@:ﬂ\ e Bt-tree fIUp[1L %In‘[ernal nodes)F B-tree IV
Wi(Tree node) [i* P ik % fifi » PIF=H| B+-tree H #ﬁﬁ‘/ﬁl Jﬁﬁﬁfﬂﬂpj T g
S o
® Each tree pointer is a disk address (or page number).
Each data pointer is in the form of (page #, offset).
® [et p be the maximum tree pointers in an internal node. Each internal node,
except the root, has at least p/2 tree pointers.

® [et q be the maximum data pointers in a leaf node. Each leaf node has at least
q/2 data pointers.
® All leaf nodes are at the same level.
® All leaf nodes are chained together according to the index key values.
® [t can handle both equality and range search.
® Sce Example 6 and 7 in page 177 to get a feeling on the number of disk access a
B+ tree search needs.
E;?Q“ — {[#" B+ tree flV=— Internal node fi’ %’ﬁfj p ([tree pointers p-1 (& 2=
S
search key =% V=9bytes » RiFEL A J‘ (block size) B = 512 bytes
data pointer <" Pr =7 bytes * tree pointer =~ P = 6 bytes
Ul (pxP)+((p-D*V) = B A (px6) +((p-1)*9) = 512

BT~ (IR %77 2] p=34 [children -
[@F@J — leafnode i AT | Preat ([data pointers 1 piear ([t search keys, |1 F—
tree pointer ?F[, ™~ [E#BEE Y leaf node > Fl]] (Prear* (Pr+V))+P = B

Elﬂtri}z (Pleaf>X< (7 + 9)) +t6 = 512
[AraEE E‘Y‘;{SITF“[?FE(%%&?F',@) Pleaf f& 27 %| 31 {fif -
PSR T T F TR [[EH?‘%![‘E ﬁ} 0 69%]33JE » &)~ internal node F|
34*69%=23 children, ;J— leaf node p E | 31*69%=21 data pointers PRIF=5— [
P9 B+ tree, E [Fiv B

Root: 1 node 22 entries 23 pointers
Level 1: 23 nodes 506 entries 529 pointers
Level 2: 529 nodes 11638 entries 12167 pointers
Leaf level: 12167 nodes 255507 record pointers

® For details on insertion and deletion to a B+ tree, please refer to some Data
Structure book.

® ;:E FA[V R g (leafl) - ¥ P s AP ff*ﬂﬁﬁﬁlﬁﬁ i

[l:

CREATE INDEX
ON R1(A1 ASC; A2 DESC)
& - PETAERR © (1, 100),(1, 70),(1, 20)....,(3, 120),(3, 50),(3, 20).....(5,
90),...... I 5l SQL #

SELECT
FROM Rl

WHERE Al =3AND A2 <70; A E(3, 50),(3, 20) » FIIHAFHE -
B e

41 WHERE UF£{u AL > 0 AND A2 =20 i - H [£52)(1, 20),(3, 20) -

F{]Wjﬁﬁ'ﬂﬁﬂ@ ’ lﬁ@ F’fﬁ@l ,’?I l/f‘i 7\ [F'JFI E[SJFF[y }Lﬁ/,ﬁﬁl@ . ﬁrj\g%?ﬁal
[R T o SO i | -

Hashing Table

® The hashing (34%) data structure is as follows:

> =]
o]

® Again, each block is in the unit of disk pages. Besides, the hashing table is also
in the unit of disk pages.

® Hashing based index can only handle equality search, range queries are not
supported.

® This data structure is beneficial only when the number of records is huge and
the index attributes is not ordered. (=¥ 4 139 F1 5.9 iﬁ Hashing
Techniques)

(=) Basic Algorithms for Executing Query Operations

Implementing SELECT Operation
® Examples : {FHHIE 5004 RO -

0 ssn=123456789' (EMPLOYEE) (Equality selection)
0 pNnumBer>s (DEPARTMENT) (Range selection)
O DNO=5 AND SALARY>30000 (EMPLOYEE) (Conjunctive selection)

® Simple Selection -
B (S1) Linear Search (brute force) @ 73T, F%I%JFZ*;ET : ?ﬁﬂj L f#ﬁlfjr—%l%@?
ek (h -

B (S6) Using a secondary index (B+ tree) : w35 9E(=) [[Fpufd= » [
I [EL key U LSS IR A AR SR
. : fgepo e =
AERURIED >, >= <, <= X[P -

Conjunctive Selection :

B (S7) Using an index on a simple condition : “F [Zd [F5 114 5~ E 1V
- FEIEFF ISR PO PSLND g Y SHL A L P -
P R RIS R LAd N -

B (S8) Using a composite index : [y f[ﬁfﬁﬁx‘xj ol] gt e d] > A
PEARSTFOSIS S SR - B0 B tree — ATHIE AU o

B (S9) Using multiple indexes and do an intersection on the retrieved
record pointers : (EH[IIEFFVERS] F5E AT THHIEEH - Fligd
& AIHEFRN o FI[F W ﬁﬁ'%%ﬁ@ ’ EFJ[J f?i%‘%?ﬁ% fht e & 52
B R SR £ (P -

Query optimization for a SELECT operation is needed mostly for

conjunctive selection. (F{rﬁ? | Z i Ed ty Fﬁfi S [‘Jlﬂﬁ » SELECT 3&i

BT)

“selectivity” is an important factor to consider in choosing between multiple

execution plans. For example, the estimated selectivity for an equality

selection on a relation R is 1/|R| if the selection condition is on a key
attribute, and 1/i otherwise, where i is the number of distinct values of the
attribute.

SERIE(s) = 4T BRI MR S o (0 <= S <= 1)

W pY s [Py A fit SELECT » Iﬂ)@,“ EFIAEE | f s S

Disjunctive selection is more difficult to optimize.

fFTUI1 : 0 pNO=5 OR SALARY>30000 OR SEX = 'F (EMPLOYEE) (Fﬁ [FF L HRL)

OR S &+ RLHHIIEIF 5 2)

Implementing the JOIN Operation

JOIN is one of the most time-consuming (ETLE?T ftilf™) operations in query
processing.

The following only deal with EQUIJOIN. (i+ ﬁ[fl lgﬁ\;—ﬁ;ja [kl
EQUIJOIN » NATURAL JOIN -)

Methods for Implementing JOINR <1 o-g S (A, B ?‘, Eb R, S PUEfE)
(J1) Nested Loop join (Brute Force) @ f§R P57~ STlghss S fus)— &
SRS AT EIEHPR L F IR (OB SREEEE) LE R 2 g

Lok e Seb the following figure

&

Main Memeory

[

"'--.___________________,_..--'" I~ =

B -+ Ersplt

E 3

wlea —d| =1 =0 | B R3 R —

udl—-g -—-g-u L-J\.DE!:\.‘I] K

|

o (J2) Single-loop join : If there is an index on the attribute B of S, we can
sequentially retrieve each tuple in R, and then use the value of A to search
the index. ({HESFYB H T[> E'[J R EJrfcl%J”Eﬁ?»J‘}iFI A i Sl
(ke [94S L SEE B (S S)

® (J3) Sort-Merge join : If R ancE S are sorted (clustered) in the disk according
to attribute A and B respectively, a subsequent merge can be conducted by
sequentially scanning both relations. (R » S [y é“ AR BEE [
BV AD ST T 2 RS e
b &SRR F’?fﬁﬁffm’?ﬁ*‘ﬁ 1E5 £ I#FF ° PRIV EEL R U]
By B SpEVE Igl\f) See the following figure.

T Main Memory

\“—"“'--.._________________,_--""‘” E =
- : .
A E - Ersolt
l 1
1 2
1 2
2 2
% 3
3 1
! ;
] i
10
o

(

Figure ¥

® (J4) Hash join: The tuples of one relation, say R, are hashed to the buckets of
a hashing structure by using the values of attribute A. The tuples of S are
then hashed to the appropriate buckets for matching by using the values of
attribute B. (5 R (Mg A 19l P 35 P 151855 5] 5 bucket ['] >)
;Hf S Iwgﬁﬁz B U@ B %@ggiﬁlfl%&;} :Uﬂﬁ[ﬁ u bucket[ﬁ{gg{l’ }H Fi
bucket [*]¥] R ¥ S i35 » 1] TF\[T H ©) See the following figure

I—I(H):Hmodlﬂﬂ

U 4 # 1.
L4201 (4] 501 4ot
) . i

2 3 W oo

99

Figure 3

Implementing the PROJECT operations

® [t is straightforward if no duplication is involved. (How do you know if the
projected results have no duplication‘? 90 PROJECT s pugf 31 | 5 f[
| key attribute FI‘JFF ' i jcj S E I Emr—%l%é'a)
® For duplication elimination, sortlng or hashing can be used. (7 SQL [*[F 2!
JFREH - JIHEET-F | DISTINCT -)
The Implementation of Set Operations

® Sorting can be used for MandU.

® Hashing can be used for Mand —

® CARTESIAN PRODUCT (X) rgé N*M {f E[f;t Rk T 0 5
| Hi Ei*r:.ﬁ'lﬂ‘?ﬂi“ G ETR St 11 IR {5 A N AL B b e

[
L d IEI’E n-u- XEJJ: ﬁ'%‘% Table 15 F|% = ﬁl[ﬁjﬁlffiﬁ’l‘i 5 E R
(g AL
Implementing Aggregate Operations
® Aggregate operators can be computed by a table scan or an appropriate index.
® Consider the following example
SELECT MAX (SALARY)
FROM EMPLOYEE;
An index on EMPLOYEE (SALARY) can be naturally used to compute it without
scanning the table EMPLOYEE. (¥, MAX § F& MIN EJH I?F‘«L%E#Jr i F,ﬁ&:@
EINEUE LRE S mﬁt%“ FIT I}Iﬁj”f’?‘ Feod [SRmAAEE T)
® Other aggregation operators like COUNT, AVERAGE, and SUM can be
computed simply from index trees without resorting to the actual data records.
® When a GROUP BY clause is used in a query, for example :
SELECT DNO, AVG (SALARY)
FROM EMPLOYEE
GROUP BY DNO;
The data records are partitioned into several groups by grouping attribute via
either sorting or hashing. Computation is then followed for the final result. ({#
GROUP BY g S il #51 sIfiic » i AT WZIRA -)
(i SQL #53 [Ek
[AECDNO £ » F] A DNO =553~ T 5 A AVG (SALARY) -
CREATE INDEX ON EMPLOYEE(DNO, SALARY) FI AR PR &3
AVG (SALARY) ©

Implementing Outer Join
® We can slightly modify the join algorithms to compute (left, right, full) outer

join.
SELECT LNAME, FNAME, DNAME
FROM (EMPLOYEE LEFT OUTER JOIN DEPARTMENT ON

DNO = DNUMBER);

® For example, to compute a left outer join, we can modify the nested loop
algorithm by using the left relation as the outer loop. However, for a given
tuple in the left relation, if no matching tuple is found, the tuple is still

included in the result but is padded with null values. (= Fi%q’y{.ﬁ J tuples £k
= [tuples [EFH OETEE RESULT [» [Ejf' it Btk
it i)

Alternatively, outer join can be computed by executing a combination of the
following relational algebra operators:

TEMP1 < 7 LNAME, FNAME, DNAME (EMPLOYEE D<I DNO = DNUMBER
DEPARTMENT)

TEMP2 — 7 LNAME, FNAME (EMPLOYEE) — 7 LNAME, FNAME (TEMP1)
TEMP2 — TEMP2 X ‘null’

RESULT «~ TEMP1 U TEMP2

TEMPI Bi:ERT = 7% > TEMP2 BRERTPUN > U fEp ™ o 7 df ["Eﬁ\ﬂj
4915 R (gl H e - i SETHOAE -

Implementation for operations involving the combination of multiple

operators

For example, it is quite common that selections are followed by a join.
Creating a temporary file to hold tuples of intermediate table is not efficient.
By combining the previous algorithms, it is possible to eliminate the
overhead of temporary files.

I DTGB T ISR ISR F U

(P4) Using Heuristics in Query Optimization

A query tree is a tree data structure that corresponds to a relational algebra

expression.

B The leaf : input relations. (& FHEEA ﬁ? R CE 9?;’ 7))

B The internal node : relational algebra operators (' IFF[1\%%#§Eﬂ FT;J““
FRREEET)

A query tree is commonly used as an internal representation of a query.

A canonical query tree (' f{JEfJ@ A is typically generated for an SQL

query without doing any optimization.

B The leaves in a canonical query tree are from the ‘FROM clause’,
connected by cartesian product (X).

B Selection (from WHERE clause ; ¢) are then applied as an internal
node.

B Projection (from SELECT clause ; 7) are finally applied above
selection.

B = HEA Figure 18.4 (b) in page 605.

Steps in converting a query tree during heuristic optimization (A&][4

G [f B)

moving selection down. (-2l J%%EW?HSI%’ Pl e A BT VR e Y

BB D WD)

applying the more restrictive SELECT first. (=ffts HHpe vl Skl fik Ppy

SELECT)

replace X and o with IX. (}{’—”J’T'”x R AYERR] fiEJOIN)

moving PROJECT down. (A ZH1E " Jﬁ E’j’[s YD A R B 0 il J/F

i 2 final query tree » S RLIE T FSffiufi vt = -
B IA Figure 18.5.(636%-610 _El) °

(=) Using Selectivitiy Cost Estimates in Query

Optimization

Query optimization can be conducted by comparing different strategies fairly
and realistically.

The strategy with the lowest cost estimate is chosen. (& & [KpvUH ['F‘ A
H)

This type of query optimization is more time-consuming and thus suitable
for “compiled query”. (i T’E'}%‘ﬁ%ﬁ M]'W)}ﬁ,%pp@ﬁ B (=5 [’Ffl il
FLEFEERE fh 8 interpreted query i 4 PR AU M,)
It is also called systematic query optimization.

It is first used by IBM System R and is now popular in most major
commercial DBMSs.

ﬂ@f& (M DR R iy 4 (T [BIP S S ik ?WE @iﬂ
wy EW%"F. BRI o PR TR S A YT R R R

"cost-based query optimization" -

Cost Components for Query Execution

i
[)

Catalo
°
°
°

ey

Access cost to secondary storage. (?Uﬁ@ﬁ%f&%’rﬁ&‘%ﬁjg}'ﬂ FIFIRY %)
Storage cost for intermediate files. (% % F[1RSI R ARG & 55 4)
Computation sost. e A P 75 WUt o 3
Communication cost. (erR] & il %)

[OMemory usage cost. (#hi E\ﬂj FRss @%"[ﬁ NGNS

For large databases, the bottleneck is on access cost.

For small databases, where most data are cached in main memory, the
bottleneck is on computation cost.

For distributed databases, the bottleneck is on communication cost. (ﬁ“r[f}?%‘. s
%2 ([t server [)

In the following, the bottleneck is on access cost. ('] ™™ % ﬁ’[H?}‘FET—E’“?VE‘}’

RIEIfi 4)

g Information Used in Cost Functions
r : number of records. (tuples) 7 ¢ r EmPLOYEE
b : number of blocks.] * b EmPLOYEE

bfr : blocking factor, i.e. number of records contained in a block.{J] : r

EMPLOYEE” D EMPLOYEE = DfT EMPLOYEE

information regarding index structure :

B x : number of levels in a multilevel index structure.(INDEX F*/gHje ;
7 : x A > A ES INDEX [ivifE)

B by number of first-level (leaf) index blocks. (INDEX pt2 ﬁ’iﬁg’!ﬁ 157
] : bria)

B d : number of distinct values of an index attribute.({¥] : d sgx = 2)

s . selection cardinality: number of resultant tuples for each equality
selection on an attribute. For example, s=1 for key attribute, and s = r/d for
non-key attribute.

Query optimizer only needs reasonably close values of the required catalog
information.

Cost Functions for SELECT

S1 : Linear Search (brute force ; {#~7-ffF55= {[# i % F1)
B non-key search : b
B key search : b/2
S6 : Using a secondary index (B+ tree)
B cquality comparison : x + s (s=1 for key equality)
B range comparison : (assuming half of the file records satisty the
condition)
X+ bIl/ 2+1/2
%{I%— #jaf?@#ﬁ Ei’?l’?ﬁ’t&ﬁkilﬂ ’ t'f REx RpuERd P f {F! (internal
block)#frs f&ﬁfﬂi‘lﬁj!f a0 IRE R br/2 % Y [T1(leaf
block)$5 1 Lz VL-V‘YBJF“ ATSVE] 8 B R e
(data pointer) > {JHEE*J /2 TFEN 7H FIR 5 iveel (s [?‘[JE‘T_LY
RIS T REEFL)
S7 : Use a simple condition as the index : the same as S6
S8 : Use a composite index : the same as S6.
Example : The following is the catalog information about EMPLOYEE
relation.
B r=10000,b=2000,bfr=35
[] clustermg index on SALARY, Xsarary = 3, SsaLary=20(20 7 5 B4 i
IS e
| B+ tree index on SSN, xssn=4, Sssn=1
| B+ tree 1ndex on DNO XDNO_2 bIlDNO_4 dDNO_125(125 [[—{I#Z F[F
spno=T/dpno = 80.(1 I (i)
| B+ tree 1ndex on SEX XSEx—l, dSEX:2, SSEX = I'/dSEXZSOOO(f@%LCF/J?
Lohh
et | P fREFR R Y 554
(OP1) ' 0 ssn=123456739(EMPLOYEE)
Linear : b/2 = 1000

Index : xgsn+1=4+1=5 (FRE |)
(OP2) : & pno-s (EMPLOYEE)
Linear : b=2000 (FRE P)

Index : XDNO + bHDNO/Z +r/2=2+4/2+10000/2 = 5004
(OP3) : 0 pno-s(EMPLOYEE)

Linear : b=2000

Index : Xpno + Spno =2 + 80 = 82 (FRHE Py ek ()
(OP4) * 0 pnO=5 AND SALARY>3000 AND SEX = ‘F* (EMPLOYEE)

Linear : b=2000

Index DNO : 82 (FREIF=E)

Index SALARY : xsapary + b/2 = 1003. (clustering index =!

PR RLAGHCRY > (1 INDEX 5 2[5 SR RE30000 b b (R85
%*ﬁ”liﬁn » DI -) R ki
Index SEX : XSEX + SSEX = 1+5000=5001

Cost Functions for JOIN

® Join selectivity, js, of R >< S is defined as : (&) TRl 5Py k)
s=IR>S| 7 (|R] * [S]) (FTJT'GRF[”UPIGQFEUE_IR|)
® Whencisd (iéﬁﬂiﬁf_{,ﬁ’% (EiF) ,js=1 (=2 CARTESIAN PRODUCT
- £
° &i‘ﬂﬁ IATATT (c) PURIERES > js =0 S HiRL 0< js <1
o enc="A=B"

B [fAisthekeyof R, then| R S|<|S|,sojs<(1/|R])
(js<(ISI/IR] *[S])

B [fBisthekeyof S,then | R <. S|<|R|,s0js<(1/]|S])
(s<(IR[/[R| *[S])

Cost Functions for R M<ia—g S

® (J1):Nested Loop (Assume the memory buffer can accommodate two pages)
cost =bg + (brk bs) + (js kg *k rg/bfrrs)

see
f/,_r——————____\ Main Memory
— 3 3

i : .

E - Ersolt

wdea =] =0 =3 d| B3B3 B =

L.Jn—-g -—-g-q L.J\.CIEI:\.‘I —oea |

(

Figure &

£% Outer loop » ™57~ fff block = S i) — f[d block F=%f— % » F|PT51Z
]ﬁ blockg"ﬂ S pusl— [l block Fg&f— T (A ﬁl Z| R & — [l block HF%f
FR AT E] Result '] » Main Memory [Result buffer ifxﬂ] H JFF[
Hifel ﬂ disk '] e ¥ R el br* > S folT brokbs 5
Result folfff(jsk (rr3krs))/ bftrs- ¥ (rr=|R [1s=|S|)

® (J2) : Using anindex,say Bof S. (ST B [®=kd[» i [Ij@%’r]ﬂﬁ)
cost =bg + rr 3k (Xg + sp) T jskrrkrg/brfrs (Xxg = index level > s
= selection cardinality B of S)
If B is a clustering index :
cost = bR + 1R Xk (XB + (SB/be'B)) + jS k1R k I's/bI'fRs (f@y[[%gﬁl E:[ﬁﬁfi
fﬁj— _EJ EI” sp/bfrg =1)
If B is the primary key :
cost =bg + rr* (Xg + 1) + js >k rg *k r/brfrs
® (I3) : Sort-merge. ([iy f[ﬁ'ﬁi’iﬁﬂ 1320 join attributes o [= 1 E#HT)
cost = bg + bs + js*rr*rs/brfrs
If sorting is needed, the sorting overhead has to be included.

See
/_/_————~x\ Main Memory
[
i - L] |
& B - Ersolt
1 1
1 Z
1 2
Z y)
% 3
a
3 7
; ?
i
] C
10
20
&0

|

Figure ¥

® Example : The following information is about the relation DEPARTMENT.
(1) rp=125,bp=13
(2) primary key is on DNUMBER, and xpnumser = 1.
(3) B+ tree is on MGRSSN, and xygrssn = 2.
o (OP6) : EMPLOYEE MXpNo-pnumBer DEPARTMENT
jSop6 = l/I‘D =1/125
Assume bfrgp = 4
Using method J1 (Nested Loop).
Case 1 : EMPLOYEE is the outer loop.
cost = bE + bE b3 bD +jSop6 b3 T b3 15)) / bfrED
=2000 + 2000 * 13 + 1/125 10000 % 125/4 = 30500
Case 2 : DEPARTMENT is the outer loop.
cost = bD + bD k bE + jSop6 *k IE *k ID / bfrED
=13+ 13 *2000 + 1/125 10000 % 125/4 = 28513

Using method J2 (Access method).
Case 1 : Using the index on DNUMBER of DEPARTMENT.
(EMPLOYEE %L outer loop)
cost = bE + 1B %k (XDNUMBER + 1) + jSop6 %k I %k 15)) / bfrED
(DNUMBER £l primary key)
=2000 + 10000 2 + 1/125 % 10000 > 125/4 = 24500
Case 2 : Using the index on DNO of EMPLOYEE.
(DEPARTMENT £l outer loop)
cost = bE +1p k (XDNO + SDN()) + jSop6 *k IE *k ID / bfrED
=13+ 125% (2 +80) + 1/125% 10000 % 125/4 = 12763
ETAPUEE A EEL >] J2 1 Case 2 ERHE{E -
Example : Compute the cost of different strategies for OP7 by using J1 and J2.
(OP7) : DEPARTMENT Xyigrssn=ssx EMPLOYEE (F I~ ?ﬂ&f,’)

- ~ Transaction Processing Concept
(Chapter 19)

(—) Introduction to Transaction Processing

What is a transaction?

1. Transaction : The execution of a program that accesses or changes the
contents of the database.
CRLECEIVRI I o~ W17 Bl Gl (BES S WA9RE ™ Rl - R
Ay SVESEET <)

2. All multi-user DBMSs support transaction processing facility.

3. From the database point of view, a transaction is a sequence of read and
write operations. Please see

Database Prosram DEMS
a=101; 71
ifa=0
oy Transaction
then Froossce | Manaew
b= Q2 02 or 3
else
b=0Q3
h=a+h:
Tt ; Stecage Maneer
Figure 4

Conceptually, these operations can be classified into :

® read-item(X) : Read a database item X into a program variable X.

® write-item(X) : Write the value of variable X into the database item
named X.

® commit (7)1 All the effects of the database execution so far have
been instaIQed into the database.

® abort : All the effects of the database execution have been erased as if it
has never happened before.

4. See Figure 19.2 in page 632 for sample transactions.

Why is concurrency control needed?

Without proper control in the presence of concurrent executions, the following
anomalies may happen.
1. The Lost Update Problem : The update effect of one transaction is lost.
See Figure 19.3(a) in page 634 for an example, and.

DEMS

Client
| LER
100
10 [n
T2
%
20 | x
¥
100

(Tl ?FVTTIEEET AR T2 BEFRITV o R T1RE 0 Vi T2 55T~ B
» T T IJ;EETE&%\' ’ ET“T DI TL (S XAVEET)

2. The Dirty Read Problem : The update effect of one transaction has been
read before it commits.
See Figure 19.3(b) in page 634 for an example. (’EI[Tl #LF'VQ:[F' (RRUIF
T2 =IREFV)

3. The Incorrect Summary Problem : The execution of a summary transaction
is interleaved with the execution of an update transaction. (T1 fYY ffiR1¥r
T T3 FIVL % FFSF T3 AR)
See Figure 19.3(c) in page 635 for an example.

4. The Nonrepeatable Read Problem:
Read of the same data item at two different places in a transaction get
different values. (7t T2 - WGV] > x fit fifi lecligh » FFSFFR -~ F IV fifi

TIRD

T, T,
1(x)
w(x,5)
commit
1(x)
commit
Why Recovery is Needed?
Desired properties about transactions : All or Nothing. (5% %Z]El NEZ TR e ng‘/ [Jéa}‘ﬂ]k
U)
Types of Failures :

1. User Abort : It may occur due to any of the following reasons :
® When an ‘ABORT’ command is explicitly issued within a transaction.
® Because some undesired conditions are detected by the program, e.g.,
insufficient balance for a withdrawal transaction.

2.

3.

System Abort : It may occur due to any of the following reasons :
® Hardware or software system failure.

® Transaction or application program error, e.g. divide by 0.

® Concurrency control enforcement, e.g. to resolve deadlock.
Media Failure > It may occur because of any of the following :

® Disk crash.

® (Catastrophe, e.g. fire or earthquake.

Types 1 and 2 are handled by the DBMS using recovery techniques, and Type 3 is

handled by backup.

(Z) Transaction and System Concepts.

Transaction States and Additional Operations

1.

The recovery manager keeps track of the following operations : (% +[fil {7

Rl RS EEIE T A -)

° BEGPI\JI TRANSACTION

READ or WRITE (produced by SQL).

END-TRACTION : ZEfEEE B3R ETAUARS - o

COMMIT : The changes to the database will not be undone even in the

presence of failure.

® ABORT (ROLLBACK) : The effect that the transaction has applied to
the database is undone.

The Transaction State :

See Figure 19.4. where ABORT is generated either by the user or by the

system.

The System Log

1.

To implement commit and abort correctly, the DBMS maintains a log, also

called journal.

The log is a sequence of log records that are kept on disk.

There are five types of log records :

® [start-transaction, T].

® [write, T, X, old value, new value]. (old value 7% before
image[BFIM] > new_value * £} after 1mage[AFIM])

® [read, T, X].

® [commit, T].

® [abort, TJ.

When an operation is performed, the corresponding type of log record is

inserted into the log in sequential order.

The log is stored on disk, but there is a log buffer in main memory.

LOG buffer ™ » ('] access - VB ?Eﬁ performance » [fI~A DA 195D

DATA buffer * lﬁ@ E&ka

e DISK MAIN MEMORY
DATA buffer
DATA < >
LOG
| LOG buffer

Commit Point of a Transaction

1. What is the commit point of a transaction? when the “commit” log record
has been written in the log and all the log records up to the commit record
have been flushed to the disk. (& pb5t Ay I e fA log fﬂ AR

2. Note that even after the commit point, the data pages written by the
transaction may not have been written to the disk.

3. Since all log records of the transaction have been written to the disk after the
commit point, its effect can be redone even failure occurs.

4. When crashes occur, if ‘commit’ log record of a transaction is not found in
the log disk, this transaction is pronounced to be ‘aborted’. All its before
images will be applied to restore to the original database state. See

DEMS

100 | X
Bon | T

log:[Start-trans, T1l[read, T1, ¥l[write, T1, ¥ 100, 200] [Commit, T1]
[Start-trams, T2][read, T2, X]lread, T2, ¥][write, T2, Y, 500, 700][Commit, T2l

Checkpoints in the System Log

1. The log will occupy more and more space, and the recovery will takes longer
and longer time.

2. To conquer this problem, a [checkpoint] log record is inserted to the log
when all the memory buffers are flushed to the disk. The checkpoint
indicates that up to this point, the effect of all committed transactions
has been reflected in the database on the disk.

3. Redo can be conducted from the [checkpoint] log record down the log.

4. Operations taken by a checkpoint :
® Suspend the execution of transactions. (7= 2 b))
® Force-write all update operations of committed transactions from main

memory buffers to disk. (§‘;ﬁfﬂ;[ﬁj’ IR AT PAAVART | RIFrerh] =
=tl X]Zli [ifj bR ME;,*;[
o rite a [checkpoint] record to the log and force-write the log to disk.
(] checkpoint %'%LJJD;U log '] » & §F{ﬁ“U}H log ¥y * %
® Resume executing transactions. (a%%ﬁiﬂ i Pr transactlons)

5. Inreality, not every DBMS uses the same checkpointing technique. The

purpose of checkpointing is to reduce the amount of log records

scanning at recovery. Any algorithm that meets this purpose can be used.

(o= Recovery E\Hj (§4s 27— [checkpoint féiF'ﬁJ?,‘!F",EJHFIJ > T
checkpoint EJJ‘ 152 on-line [IUFER = % <=~ % checkpoint f1j5
T)

(=) Desirable Properties of Transactions

1. The following are the ACID properties that a legal transaction should

possess :

® Atomicity : All or nothing. (- JLFZH%‘L’W PE["‘;‘L) 7\] fﬂj =)

® Consistency : A transaction brings the database from one consistent
state to another. (— %)

® Isolation : A transaction should not make its updates visible to other
transactions until it is committed. (Bﬁ%’y‘\i)

® Durability : Once a transaction commits, its effects must never be lost.

(FREH)

(PY) Schedules and Recoverability

Schedules (Histories) of Transaction

1. We want to figure out what kind of transaction execution in an interleaved
fashion is acceptable.

2. A schedule (or called history) of transactions T, T», ..., Ty is a (total)
ordering of the operations in T;, T», ..., Ty such that the operations of any
transaction T; appear in the same order in which they occur in T;. For
example, a schedule of Figure 19.3 (a) in page 634 can be written as :
r1(X); 12(X); wi(X); r1(Y); wa(X); wi(Y) [X:=X-N %L client ! rﬁ#k =Y
{E:[-E.IT) ﬁ@‘j\ E[J FAfljj/\L#l

3. Two operations are said to conflict (72) if they satisfy all of the following
conditions -
® They belong to different transactions.
® They access the same data item.
® At least one of them is a write operation. (thus, there are r-w, w-r, and

w-w conflicts).

4., - f[”%‘a’ﬁ&]éﬁ#%(completed schedule ; S)[EE'E Jj\ = FEHE J Z

1. Alg’if JP%JF JF"TEJ*‘ bh (T1, To, ..., Tn) f9 = F#[I5E £ (operation) &
ks Eifﬁ izl JF:{:FK/’TJV(F[PELET > g rl(X) (X)), wi(X), 11(Y), Wzog)
c2, Wi(Y), ¢ (¢ commit, r & read, w F31- write) e

2. WET RAR JIEjETﬂ g T EEE P R R il HI A Bl Y
I ﬁl[

3L B LRI E, > PR TR i At -

Characterizing Schedules Based on Recoverability

1. Aschedule S is recoverable if any transaction T in S commits after all
transactions that T read data from commit.
2. Ifaschedule is not recoverable, some committed transaction may have to be

rolled back. For example,

11(X); wi(X); 12(X); 11(Y); wa(X); €23 ar;

However, a recoverable schedule may still introduce “cascading rollback”. For
example

11(X); wi(X); r2(X); 11(Y); wa(X); ai;

A schedule is said to be cascadingless (i.e. to avoid cascading rollback) if every
transaction in the schedule only read data items that were written by committed
transactions. (folFE 5 — £YF] ﬁj*ﬁé@?}?ﬁﬁlm commit)

However, even in a cascadingless, we cannot just place the “before-image” of a
data item X when a transaction that writes X is aborted. For example,

o Wl(X,S), W2(X78)7 aj,
® suppose the initial value of X is 9
® The system log is

[T1, start];[T1, w, X, 9, 5];[T2, w, X, 5, 8];[T1, ABORT]:;

® LF%E\JJET Fefl HoR X fififidny before-image 9.

6.

A schedule is said to be strict if transactions cannot read or write a data item X
until the transaction that last wrote X has committed.
Strict schedule puts restrictions on operations with w-r or w-w conflicts.

(=) Serializability of Schedules

1.

What kinds of schedules are considered ‘correct’?
Ans. : serial schedule.
Transactions are considered “independent”. Thus the order of execution is
irrelevant.
Problems with serial schedules : waste system resources, e.g. CPU and
memory.
A schedule is serializable if it is equivalent to some serial schedule.
Types of "equivalence" :
® Result equivalence :

® hard to check

® results may be the same by accident
® View equivalence :

® the data read by each read operation are the same

® the data written are the same.

e.g. * ri(X); waX); wi(X); wi(X); c1; €25 €35

It has been shown that there is no efficient way for testing view
serializability.
Conflict equivalence : the order of any two conflicting operations is the same
in both schedules.
A schedule is conflict serializable if it is conflict equivalent to some serial
schedule. For example, schedule D of Figure 19.5 (c) is conflict equivalent
to schedule A of Figure 19.5(a).

Testing for Conflict Serializability of a Schedule

1.

3.

Use a serialization graph (or called precedence graph) (V, E) to represent a
schedule S, where V is a set of committed transactions in S and (T;, Tj) € E
if

® one operation ¢; in T; conflicts with another operation e; in Tj, and

® ¢ precedes e;.

A schedule is serializable if its corresponding serialization graph contains no
cycles.

See Figure 19.7 (¢) and (d).

See Figure 19.8 (b) and (c)

This approach is practically of no use because of its high overhead.

(7) Transaction Support in SQL

With SQL, a single SQL statement is always considered to be atomic.

To group a sequence of SQL statements as a transaction, an explicit COMMIT or

ROLLBACK is specified at the end. Note that SQL does not have explicit

Begin Transaction statement.

SQL2 supports a SET TRANSACTION statement, which allows users to specify

the properties about transaction execution.

1.
2.
3,
4,

o

o

o

o
5

The property about transaction interleaving is called isolation level:

UNCOMMITTED: allows dirty read, nonrepeatable read, and phantom
READ COMMITTED: disallows dirty read, but allows nonrepeatable read
and phantom

REPEATABLE READ: disallows dirty read and nonrepeatable read, but
allows phantom

SERIALIZABILITY: disallows dirty read, nonrepeatable read, and phantom

Dirty read and nonrepeatable read are defined at the very beginning of this unit.

Phontoms is defined as follows:

A transaction T1 may read a set of rows that satisfies a condition C from a
table. Now after T1 read these rows, another transaction T2 insert a row that
satisfies C. This new row is considered as a phantom because if T1 is to be

re-executed, this new row will be retrieved.

6. A sample embedded SQL transaction:
EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION

READ WRITE
DIAGNOSTICS SIZE 5
ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE(FNAME, LNAME, SSN, DNO,
SALARY) VALUES (‘Robert’, ‘Smith’, ‘991004321°, 2, 35000);

EXEC SQL UPDATE EMPLOYEE SET SALARY=SALARY*1.1 WHERE
DNO=2;

EXEC SQL COMMIT;

GOTO THE-END;

UNDO: EXEC SQL ROLLBACK;

THE_END: ...

< — ~ Concurrency Control Techniques
(Chapter 20)

. This chapter introduces protocols that guarantee serializability.
® Two Phase Locking (2PL).
® Timestamp Ordering (T/O).
® Optimistic.
2. In practice, only (strict) 2PL is used it makes recovery easier.
3. In the following, we only describe 2PL.

) Locking Techniques for Concurrency Control

1. Alock is a variable associated with a data item in the database. A lock

describes the status of the associated data item.

Types of Locks and System Lock Tables

1.

>

Binary Locks.

® Domain : {locked, unlocked} (or 1 and 0, for simplicity)

® Operations :
® Jock(x) : lock state of x = locked
® unlock(x) : lock state of x = unlocked.

® Before accessing a data item x, a transaction must first issue lock(x).

After finishing accessing x, unlock (x) can be issued.
® See Figure 20.1 in page 663 for detailed operations of lock() and
unlock().

® Note that both operations must implemented as indivisible unit.

Shared and Exclusive Locks.

® Domain : {shared-locked, exclusive-locked, unlocked}.

® Operations :
® read-lock(x) : lock state of x = shared-locked. (“¢ £l 7 pbf

)
® write-lock(x) * lock state of x = exclusive-locked. (727 F 1%
LIV > F R)

® unlock(x) : lock state of x = unlocked.

See Figure 20.2 in page 665 for exact operations.

Again, these operations must be indivisible.

Each record in the lock table has four fields :

<data item name, LOCK_STATE, no of reads, locking_transaction(s) >

Rules for share/exclusive locking:

® Aread lock(x) or write lock(x) must be issued before any read item(x)
can be performed.

® A write lock(x) must be issued before any write item(x) can be
performed.

® Unlock(x) must be issued after all read item(x) and write item(x) are
completed in the transactions.

® A transaction will not issue read lock(x) if it already holds read lock or

write lock on x.
® A transaction will not issue write lock(x) if it already holds a write lock
on x. However, if it already holds a read lock, write lock(x) will try to
upgrade the lock status to write lock.
7. Two extra locking operations (Conversion of locks) :
® lock upgrade : read-lock(x) followed by write-lock(x) in the same
transaction.
® Jock downgrade : write-lock(x) followed by read-lock(x) in the same
transaction.
8. Using binary locks or shared and exclusive locks does not guarantee
serializability. See Figure 20.3 in page 666.

Guaranteeing Serializability by 2PL

1. Two Phase Locking protocol : All locking operations precede any unlock
operation.

no. of lpcks \

expanding shrinking
2. See Figure 20.4 for transactions following 2PL protocol.
3. Downgrading of locks must be done at the shrinking phase in order to
guarantee serializability. (Why?)
4. Why does 2PL guarantee serializability? Use the Serialization Graph to
prove the non-existence of cycles if 2PL is employed.
5. Variations of 2PL
® Conservative 2PL : All locks are acquired before the transaction begins
execution. Critique: not practical. (g [FFHf#h /=)
® Strict 2PL : All locks are released at commit or abort. This is the most
popular approach and can be easily used with recovery technique. ([&#ZE
T BL=IAT commit ﬁ& abort > F\[FIT H‘:Eﬂ{%— locks)

»
!

time

Deadlocks and Livelocks

1. See Figure 20.5 for an example.
2. Deadlock Prevention
Each transaction is assigned a timestamp. When a transaction T requests a
lock which is held by T;,
B No waiting : T; is aborted.
B Wait-die : old waits for new
if TS(T;) <TS(T;))
then T; 1s allowed to wait
else T; is aborted
B Wound-wait : new waits for old
if TS(T;) <TS(T;))

then abort T;
else T; waits
B Cautious waiting -
if Tj 1s not blocked (not waiting for some other locked item)
then T; is blocked and wait
else T; is aborted
3. Deadlock Resolution
® Timeout : Disadvantage : the timeout period is hard to determine.
® Deadlock Detection and Breaking
B Wait-for-graph: See Figure 20.5.
B Deadlock breaking (victim selection).
4. Livelock
® A transaction is livelocked if it is blocked for an indefinitely
period of time.
® Livelock occurs when locking protocol is not fair. For example, if
a read lock request that comes later can be granted while a write
Icok request that comes earlier has to wait.

(Z) Granularity of Data Items

1. A database item could be chosen to be one of the following :
® The whole database.
® Table (A whole file).
® Page (Adisk block).
® Record.
® Field.

2. LOCK fufitib i | SR 355 ﬂmﬂfg} T ST
&ﬁ Finer granularity allows higher concurrency while introduces more
overhead :
® More storage space.
® More searching time for lock and unlock operations.
® More maintenance overhead.

Degree of Isolation (theoretical description)

1. Degree 0 - (Dirty Read) write-lock is acquired before each write operation
and released after it.

2. Degree 1 : (Browse Access) Degree 0 + write-lock is held until
commit/abort. Degree 1 can prevent lost update problem.

3. Degree 2 : (Cursor Stability) Degree 1 + read lock is acquired before each
read operation and released after it.

4. Degree 3 : (Repeatable Read) Degree 2 + read locks are held until
commit/abort, i.e. strict 2PL.

- Z ~ Database Recovery Techniques
(Chapter 21)

(—) Recovery Concepts

1. Steal/No-Steal : If a cached page updated by a transaction cannot be written to
disk before the transaction commits, this is called a no-steal. In other words, a
cached page has to be pinned until the updating transaction commits. Of course,
no-steal requires the system to allocate a very large buffer space for the updated
pages in memory.

2. Force/No-Force : If all pages updated by a transaction are immediately written to
disk when the transaction commits, this is called force approach. Of course, force
demands more I/O operations.

3. Typical database systems employ a steal/no-force strategy.

(Z) Types of Recovery
Deferred update(Jx; F157)

1. Each update is first recorded in the local transaction workspace.

2. At commit, all the updates are first recorded persistently in the log and then
written to the database.

3. Noundo is needed at failure. ({1 £/ % FLF:?H RETErey S I [FL,YFJJ— K
pbR R 1+ UNDO)

4. BTl PREETYRIE REGRL) IR log AL O BT -

Immediate Update(Z J[|F15T)

1. The database is immediately updated at each operation.

2. Before an update is flushed to the disk, the undo log must be recorded
in the disk (called write-ahead logging ; WAL). This can occur before commit.

(T{—_f- EI %‘Eﬁ*‘;{e[F{j, R @F%Z_[/ FJ‘I’JL‘L#“[;_[/ F” EI'U undo]()g F@?”@E;{PJ)

3. At commit, the log records of a transaction must be written to the disk.
4. It needs undo/redo log.
5. If there is no cascading abort, only write operations need log records.

® REDO-type log record : [write, T, x, after image]

® UNDO-type log record : [write, T, x, before image]
6. In practice, all commercial DBMSs use strict 2PL. Thus, cascading abort will not
occur. Immediate update is more popular.

Recovery for UNDO/REDO Immediate Update with Concurrent
Execution

1. From the last checkpoint, get active transaction list.

2. Scan forward from the last checkpoint in the log, apply the redo log, and form :
® committed transaction list (since the checkpoint).
® active transaction list (at the failure time).

3.

™

Undo the write operations of active transactions by scanning backward and
applying the undo log record.

(=) Shadow Paging

A page table maintains a list of pointers to actual disk pages. It is called shadow
page table.

When a transaction starts, the shadow page table is copied to the current page
table in the local memory. See Figure 21.5.

When an update to a page occurs, a new disk page is created and pointed by the
current page table.

When a transaction commits, all the written pages are flushed to the disk and
the current page table is merged to the shadow page table.

When a transaction aborts, the current page is discarded.

Advantages : Recovery is fast since neither undo nor redo is needed.
Disadvantages -

® Need more space, which in turn complicates garbage collection.

® Committing a transaction takes more time.

