
ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 535

Received November 13, 1998; revised July 9, 1999; accepted August 2, 1999.
Communicated by Yi-Bing Lin.
*This research was supported by the National Science Council, R.O.C., under grant NSC 86-2213-E-110-003.

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 16, 535-554 (2000)

535

On Optimistic Methods for Mobile Transactions

SAN-YIH HWANG

Department of Information Management
National Sun Yat-Sen University
Kaohsiung, Taiwan 804, R.O.C.

E-mail: syhwang@mis.nsysu.edu.tw

We propose a new transaction execution model in a mobile environment where a subset
of data items is cached by each mobile host. This execution model allows each mobile host to
execute transactions locally and, before their commits, to request certification from the data-
base server on the wired network. The database server certifies a commit request only when
the execution of its pertaining transaction was consistent. This protocol behaves like the opti-
mistic concurrency control mechanisms in traditional transaction processing systems. However,
traditional optimistic algorithms cannot be applied directly to mobile environments. We pro-
pose three strategies for validation of commit requests by the database server. These strategies
aim to minimize both the processing overhead and transaction abort ratio. We compare the
performance of the proposed strategies via both complexity analysis and simulation and suggest
guidelines for choosing the best algorithm for different operating regions.

Keywords: mobile computing, transaction management, databases, optimistic concurrency
control, data cache and data replication

1. INTRODUCTION

Data management in mobile computing has attracted a lot of research interest in re-
cent years. The objective of research in this area is to carefully manage scarce resources,
such as energy consumption by mobile hosts, wireless communication with limited
bandwidth, and restricted connection times due to voluntary or involuntary disconnections,
so as to satisfy the data requirements of mobile users. A mobile environment is composed
of a set of mobile hosts and fixed hosts on a wired network [13]. Of all the fixed hosts,
some hosts, called Mobile Support Stations (MSSs), are identified for communicating with
mobile hosts. As wireless communication with MSSs is expensive, slow, and unreliable,
each mobile host may put some frequently used data in its local cache to prevent wireless
communications as much as possible. However, due to its portable nature, a mobile host
has limited capacity in terms of cache storage, making wireless communication unavoidable.
To satisfy the data requirements of mobile users while minimizing wireless communication
traffic, many researchers have proposed the use of broadcasting mechanisms in a mobile
environment [13]. When the required data items are not available in the cache, mobile
hosts just passively wait for their arrival by listening to wireless broadcasts. The data broad-
casting approach reduces or even eliminates the need for uplink communcations and pre-
vents redundant transmissions of popular data. However, the repeated broadcasts of less
popular data could be a waste of communication bandwidth. To negate this disadvantage, a
number of studies have taken into account the data demand patterns in deciding on the

SAN-YIH HWANG536

content of both the broadcast channel and the cache [1-3, 8, 10]. Cache replacement strat-
egies were discussed in [12, 7]. To enable power-conservant retrieval of needed data, sev-
eral index structures imposed on broadcasted data have also been proposed [14, 17].

Another line of research in this area aims to ensure that the cached data is up-to-date.
This is not trivial because updates are assumed to occur only at the database server in most
works, and their effects may not be reflected in the cache of each mobile host due to
difficulties in tracking the mobile hosts that keep the involved data. To reduce the need for
uplink communications, some researchers have also advocated the use of broadcasting to
disseminate the status of data, called an invalidation report, which can be used by mobile
hosts to determine the validity of their cached data. There have been a number of proposals
on the contents of invalidation reports and invalidation protocols [5, 16].

All of the above works assumed that updates only occur at the database server on a
wired network. Mobile hosts only read data. In [18], the authors proposed an approach to
handling update requests of a mobile host that is disconnected from the the wired network.
Their approach enables a mobile host to update its local cache while it is disconnected and
to propagate the updates to the database server when it is reconnected. However, the focus
of their work was to reduce the overhead needed for disseminating update logs to relevant
mobile hosts, and transactional consistency was not considered.

When updates to databases are to be conducted via transactions, most works require
that the entire transaction programs sent to the database server and executed there. Some
researchers have proposed the client-server transaction execution model that makes use of
the computing power of mobile hosts in executing transactions. In this model, mobile hosts
are responsible for executing transaction programs with data requests being submitted to
the database server interactively. Several works on transaction management reported in the
literature were based on the client-server execution model [9, 15, 19]. These works as-
sumed that the same set of data is stored in several database servers on the wired network,
some of which could be closer to a mobile host than the rest, and proposed protocols to
reduce the communication overhead while at the same time maintaining transactional
consistency.

Our work also deals with the transaction management issue in a mobile environment.
However, we assume a different execution model: each mobile host executes transaction
programs and processes their data requests against its local cache, and only commit re-
quests are sent to the database server on the wired network for certification. Unlike the
client-server execution model, this execution model makes use of the transaction process-
ing facilities of mobile hosts and induces less wireless communication, which in turn makes
it more suitable to a mobile environment where communication is considered limited and
vulnerable.

Allowing each mobile host to process transactions locally without any coordination
could cause problems in data consistency. To illustrate, let us assume two transactions T1

and T2, resulting from the execution of the following program by different mobile hosts:

begin-transaction r(x) x = x + 1 w(x) commit.

Initially, let the value of x be 0, and let it be cached by the two mobile hosts host1 and
host2. After the execution of T1 and T2, the value of x becomes 1 at both mobile hosts, so
the correct value should be 2. This causes the lost update problem [6]. The following
shows the scenario:

ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 537

To ensure correct transaction executions, commit operations have to be certified by
the database server on the wired network. To this end, optimistic concurrency control
algorithms seem to lend themselves very naturally to our execution model. However, they
cannot be applied directly. In this paper, we propose three optimistic algorithms for vali-
dating transactions to achieve 1-copy serializability. We also conduct a comprehensive
comparison of the proposed algorithms via both theoretical analysis and simulation. To the
best of our knowledge, no other work in the literature has been devoted to the investigation
of the same topic.

Paper Organization

The rest of the paper is organized as follows. In section 2, we discuss in detail the
transaction execution model adopted in our work. In section 3, we describe a scheme for
coordinating transaction executions at mobile hosts. Several algorithms for processing
commit requests will be proposed and discussed. In section 4, we compare the performance
of the proposed algorithms via theoretical analysis and simulation. In section 5, we discuss
the extensions to our algorithms in a more general environment. In section 6, we describe
the related work in the literature. Finally, in section 6, we give conclusions.

2. MOBILE MODEL

The mobile model we adopt in this paper is similar to that described in [13]. A wired
network connects, among others, a set of Mobile Support Stations (MSSs), and each MSS is
responsible for communicating with the mobile hosts close to it. When a mobile host
moves beyond the effective distance of a MSS, it has to establish a connection with another
MSS that is effectively closer. In this paper, we will first limit the scope of our discussion
to a single MSS, with which a database server is associated. While this limitation is not
really necessary, it will simplify our presentations of the algorithms. Section 5 discusses
issues related to extending our algorithms to a more general environment, where more than
one MSS communicates with a database server. The reference architecture for now is
depicted in Fig. 1.

To speed up data processing and to reduce wireless bandwidth consumption, each
mobile host caches a subset of data in its local storage. Each mobile host evaluates the
validity of the cached data items by listening to the invalidation reports periodically broad-

x=0 x=1

x=0 x=1
host 2

host 1
x=x+1

x=x+1

SAN-YIH HWANG538

casted by the MSS. An invalidation report provides information about the status of the data
items stored in the database of the MSS. Each mobile host repeats the cycle of listening to
the invalidation report and processing transactions. The duration of the cycle is called the
broadcasting interval. Note that we make no assumptions about the content of the invali-
dation reports and invalidation protocols. Any invalidation protocol [5, 16] can be used
with our proposed algorithm to achieve transactional consistency in a mobile environment.

We also assume the use of strict 2PL by each mobile host in handling transactions.
This assumption is reasonable because strict 2PL is the dominant concurrency control
mechanism used in commercial DBMS products. Read and write operations of a transac-
tion are processed solely by a local mobile host. If the data needed by an operation is not
available in the local cache, an uplink request is submitted, and the required data is placed in
the local cache before processing. To achieve global consistency, commit requests are first
validated by the MSS before they are processed by mobile hosts.

We further assume that transactions executed on mobile hosts are short so that they
can be completed before the the next broadcasting interval begins. This assumption is made
to ensure that the data values read by a transaction at different times are consistent.

3. THE ALGORITHMS

This section first outlines a protocol used by the MSS and mobile hosts for process-
ing transactions. This protocol is optimistic in the sense that all read/write operations are
processed solely by mobile hosts, and that only commit operations are validated by the
MSS. We then propose several alternative ways for the MSS to validate commit requests.

3.1 The MSS and Mobile Host Protocol

When a mobile host receives a read/write operation, it checks if the data item re-
quired for the operation is available in the local cache. If it is, this operation is processed
immediately by the mobile host; otherwise, a data request is sent to the MSS. Upon receiv-
ing the value of the data item as well as the timestamp that records the time it was last
updated, the mobile host determines if the data item has been updated since the invalida-
tion report was last received. If it was, which implies that the value of the data item is too

Fig. 1. Reference architecture of a mobile system.

mobile hosts

MSS

. . .

ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 539

new and may not be consistent with the other data values stored in the local cache, the
pertaining transaction has to be rejected. Otherwise, the read/write operation is scheduled
as usual.

When a mobile host receives a commit operation, it passes it on to the MSS for
certification. The MSS determines whether committing the requesting transaction may
violate serializability. If it will, the commit request is rejected; otherwise the MSS certifies
the associated transaction, allowing it to be applied to the database. Fig. 2 shows how the
MSS handles requests from mobile hosts.

When a request from a mobile host arrives at an MSS:
Case 1: a data request d
 Return the value of d and the timestamp of its last update.
Case 2: a commit request from a transaction T
 If committing T violates serializability
 then return reject
 else apply T to the database and return accept

Fig. 2. Outline for a MSS to handle requests from mobile hosts.

The following subsections discuss how the MSS conducts certification. Specifically,
we will discuss how the three types of certifiers, SGT, 2PL, and TO [6], can be modified to
work in a mobile environment, resulting in three new certification algorithms.

3.2 Algorithm MTC-SG − − − − − Based on the SGT Certifier

The traditional SGT certifier dynamically maintains the serialization graph by adding
appropriate edges for each received read/write operation. When a commit operation is
received, the SGT certifier checks if the serialization graph, which involves active transac-
tions and transactions recently committed, is acyclic. If it is, the associated transaction is
certified and can be executed accordingly. Otherwise, it is aborted, and the related edges
are removed from the serialization graph. This approach cannot be applied in a mobile
environment because the operations of a transaction are not known to the MSS before its
commit time; thus, the MSS is not aware of the existence of active transactions currently
executing at mobile hosts. We modify the SGT certifier and call the modified algorithm
MTC-SG, denoting Mobile Transaction Commit using the Serialization Graph. Instead of
keeping active transactions and transactions committed recently in the serialization graph,
MTC-SG maintains in the serialization graph only transactions committed by the MSS since
last broadcasted. When a transaction Ti requests execution, MTC-SG first adds edges that
involve Ti and each conflicting committed transactions, and then checks whether the in-
duced edges cause any cycle in the serialization graph. If so, the commit request is rejected;
otherwise, it is accepted.

Recall that we assume that each mobile host employs strict 2PL as its internal
concurrency control mechanism. Thus, when a committing transaction T conflicts with
some committed transaction T ', the serialization order between T and T ' can be easily ana-
lyzed as follows:

SAN-YIH HWANG540

case 1: a read operation rT(x) of T conflicts with a write operation wT '(x) of T '. In this case,
if T and T ' execute at the same mobile host, the value of x read by rT(x) must have
been written by wT '(x). Thus, an edge T ' → T is added to the serialization graph.
Otherwise, since T ' was processed after the last broadcast, the new value of x writ-
ten by wT '(x) must not be read by rT(x). Thus, an edge T → T ' can be added.

case 2: a write operation wT(x) of T conflicts with a read operation rT '(x) of T '. In this case, rT '
(x) must not read the data value of x written by wT(x). Thus, an edge T ' → T is
added.

case 3: a write operation wT(x) of T conflicts with a write operation wT '(x) of T '. Since the
data updated by a transaction is written to the database of the MSS only at the
commit time, the serialization order follows the committing order. Again, an edge
T ' → T is added.

Fig. 3 depicts the algorithm MTC-SG for processing a commit request from a trans-
action T.

{ CT is the set of transactions committed after the last broadcast.}
{ SG is the serialization graph of CT.}

for each transaction T ' in CT do
begin

if the read set of T overlaps the write set of T '
then if (T ' and T are from the same mobile host)

then add T ' → T to SG;
else add T → T ' to SG;

if the write set of T overlaps the read set or write set of T '
then add T ' → T to SG;

end
if SG contains any cycle then
begin

eliminate all edges induced by T from SG;
reject the commit request;

end else
begin

CT ← CT ∪ {T};
accept the commit request;

end
end

Fig. 3. Algorithm MTC-SG for handling the commit request of a Transaction T.

3.3 MTC-SQ

The processing overhead of algorithm MTC-SG is not trivial because determining
the existence of cycles in the serialization graph takes time, especially when the number of
committed transactions becomes large. In this section, we look into the possibility of em-

ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 541

ploying the 2PL certifier or TO certifier in a mobile environment. The traditional 2PL
certifier schedules a read/write operation immediately and, when a commit request is
received, checks each operation to see if it conflicts with an operation of any other active
transaction. If it does, the commit request is rejected; otherwise, it is accepted. As in the
case of the SGT certifier, the 2PL certifier also needs information about active transactions,
which is not available in a mobile environment. We can of course modify the 2PL certifier
in such a way that operations of a committing transaction are compared with those of
transactions committed after the last broadcast. This approach, though simple, suffers
from low concurrency as no conflicting operations can exist during each broadcasting
interval. In fact, conflict operations should be allowed if a particular conflict order among
transactions is followed. This idea leads us to investigation of the TO certifier approach.

Like the 2PL certifier, the TO certifier schedules the read/write operations immedi-
ately and postpones conflict checking until a commit request is received. The commiting
transaction is certified only if all conflicts involving its operations are in timestamp order.
Since the operations of these ongoing transactions are not available to the MSS in a mobile
environment, conflict checking can be performed by looking at the operations of the com-
mitting transaction and those of transactions committed after the last broadcast. Furthermore,
a transaction is assigned a timestamp by the MSS when its commit request is received. That
is, all conflicts must follow the commit order.

In MTC-SG, commit requests are sequentially processed by the MSS, and a commit-
ting transaction T may be earlier in serialization order than any committed transaction T'
only when the following two conditions both hold. (These are the conditions in MTC-SG
that yield the serialization order T → T '.)

1. the read set of T overlaps the write set of T ', and
2. T ' and T are from different mobile hosts.

Thus, a simple way to guarantee a serializable execution is to reject the commit re-
quest of a transaction if it satisfies the above conditions. This ensures that the serialization
order will follow the commit processing order.

Though simple, the above approach tends to trigger many unnecessary transaction
aborts. To illustrate, suppose a transaction that writes some data item x has committed. The
above approach will abort all the following transactions that read x. Thus, if an update
transaction commits very early within a broadcasting interval, then many transactions may
be aborted, including read only transactions. In fact, most read only transactions can be
serialized before the conflicting update transactions are since they read the data items that
have not yet been updated by the update transactions. Thus, we adopt the following
alternative. A sequential order of the committed transactions is maintained by the MSS.
When the commit request of a transaction T arrives, the MSS checks if T can be inserted at
some point in the sequential order such that the resulting sequential order will comply with
the serialization order. If it can, T is committed; otherwise, T is aborted. The serialization
order between T and a committed transaction T ' is defined as follows.

Definition 1: For a committing transaction T and a committed transaction T ', T is said to be
serialized before T ' if

SAN-YIH HWANG542

1. T and T ' are executed by different mobile hosts, and
2. readset of T overlaps the writeset of T '.

Definition 2: For a committing transaction T and a committed transaction T', T is said to be
serialized after T ' if

1. the readset of T overlaps the writeset of T ', and T and T ' are executed by the same
mobile host, or

2. the writeset of T overlaps either the readset or writeset of T '.

Without loss of generality, let the sequential order of the committed transactions be
T1, T2, ..., Tn. When the commit request of a transaction T arrives, we need to find two
integers low and up, where low = Max{i | T is serialized after Ti, 1 ≤ i ≤ n} and up = Min{ i
| T is serialized before Ti, 1 ≤ i ≤ n}, such that low < up1.

Example 1: Let T1, T2, T3 be committed transactions. T1 and T3 are executed by the same
mobile host while T2 and the committing transaction T are executed by separate mobile
hosts. The readsets and writesets of the three committed transactions and T are shown
below:

noitcasnarT T
1

T
2

T
3

T

tesdaer {x
1
, x

2
} { x

2
, x

3
} { x

1
, x

4
} { x

3
, x

4
}

tesetirw {x
1
} { x

2
} { x

4
} { x

3
}

Let the current sequential order be T1 → T2 → T3. It can be observed that T is serialized
after T2 and before T3. That is, low = 2 and up = 3. Thus, the new sequential order becomes

T1 → T2 → T → T3.

The algorithm is called MTC-SQ and is shown in Fig 4.

{ n is the number of transactions committed after the last broadcast.}
{ CT is an array of transactions committed after the last broadcast.}
low:=0; up:=n+1;
for i:=1 to n do
begin

if T is serialized before CT[i]
up = i;
break;

end
for i:=n downto 1 do

1 If low (up) is undefined, i.e., T is not serialized after (before) any committed transaction, then low = 0 (up = n + 1).

ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 543

begin
if T is serialized after CT[i]

low = i;
break;

end
if (low < up)
begin

for i:=n downto up do
CT[i+1] = CT[i];

CT[up] = T;
n:=n+1;
accept the commit request of T;

end
else reject the commit request of T;

Fig. 4. Algorithm MTC-SQ for handling the commit request of a transaction T.

T1 T2

T

3.4 MTC-Hybrid

Although the processing overhead of MTC-SQ is significantly less than that of MTC-
SG, it incurs a potentially higher abort ratio. This happens because there exist scenarios in
which a committing transaction fails to find a position in the sequential order of MTC-SQ
but it does not introduce any cycle in the serialization graph, as shown by the following
example.

Eexample 2: Suppose there are two committed transactions T1 and T2, and the sequential
order is T1 followed by T2. The readsets and writesets of T1 and T2 are shown below:

noitcasnarT T
1

T
2

tesdaer {x} { y}

tesetirw {x} }{

The readset of the committing transaction T is {x, y}, and the writeset is {y}. As-
sume that T1, T2, and T are executed by different mobile hosts. Thus, T is serialized after T2

and before T1. Apparently, T cannot be inserted into the sequential order T1 → T2. However,
it can be seen that the resulting serialization graph, where arrows with solid lines represent
serialization orders and those with dotted lines indicate sequential order, is acyclic:

SAN-YIH HWANG544

The reason why MTC-SQ may cause unnecessary aborts is that it maintains a total
order of transactions, rather than a partial order as maintained by the serialization graph in
MTC-SG. It is clear that if a committing transaction passes the test of MTC-SQ, then it
must also passes the test of MTC-SG, but the reverse is not always true. This suggests a
hybrid approach that combines both MTC-SQ and MTC-SG. Specifically, it first uses

MTC-SQ to check whether a committing transaction T is able to find a position in the
sequential order. If it can, T is committed. Otherwise, MTC-SG is employed to see if T
introduces a cycle in the serialization graph. If it does, the commit of T is rejected. Otherwise,
T is committed, and the sequential order is adjusted.

Let us discuss in more detail the case where a committing transaction T does not pass
the test of MTC-SQ. In this case, the two integers low and up computed by MTC-SQ must
be low > up. That is, it is found that T must be serialized between Tlow and Tup, and this is not
possible because low > up. This scenario can be visualized as follows:

Note that the serialization order between two transactions Ti and Tj can only be Ti followed
by Tj if i < j . Thus, if there exists a cycle on the serialization graph of {T1, T2, ..., Tn, T}, then
this cycle can only involve Tup, Tup+1, ..., Tlow and T, and no more. Thus, only the subgraph
involving {Tup, Tup+1, ..., Tlow, T} needs to be checked. This observation enables us to dra-
matically reduce the processing overhead. The approach, called MTC-Hybrid, is shown in
Fig. 5.

T

...

Tlow TnTupT2T1

... ...

{ n is the number of transactions committed after the last broadcast.}
{ CT is an array of transactions committed after the last broadcast.}
low:=0; up:=n+1;
for i:=1 to n do
begin

if T is serialized before CT[i]
up = i;
break;

end
for i:=n downto 1 do
begin

if T is serialized after CT[i]
low = i;
break;

end
if (low < up)
begin
 for i:=n downto up do
 CT[i+1] = CT[i];

ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 545

Example 3: Let {T1, T2, ..., T7} be the set of committed transactions, and let T be the
transaction that submits the commit request. The sequential order is T1, T2, ..., T7. The
following depicts their serialization order. An edge Ti → Tj indicates that Ti conflicts with
and is serialized before Tj.

It can be seen that low = 5 and up = 2, and that there do not exist any cycles that
involve T in the new serialization graph. The positions of transactions T2, T3, T4, T5 need to
be adjusted such that transactions that can be reached by T (i.e., {T2, T4}) must be placed
after those not reached by T (i.e., {T3, T5}) in the new sequential order. The following
shows the new sequential order:

Fig. 5. Pseudo code of MTC-hybrid.

 CT[up] = T;
n:=n+1;
accept the commit request of T;

end
else begin {cannot find a position in the sequential order}

{SG' is the serialization graph involving {Tup, Tup+1, ..., Tlow}};
if T introduces any cycle in SG'
then begin

eliminate all edges induced by T;
reject the commit request of T;

end else {adjust the positions of {Tup, Tup+1, ..., Tlow} in CT}
begin

{ RT is an array of transactions in SG that can be}
{reached by T and follow the relative order in CT.}
{ N RT is an array of transactions in SG that can NOT be}
{reached by T and follow the relative order in CT.}
for i:=1 to |N RT| do

CT[up+i] = N RT[i];
CT[up+|N RT|] = T;
for i:=1 to |RT| do

CT[up+|N RT|+i] = RT[i];
n:=n+1;
accept the commit request of T;

end
end

end

T

T4T1 T2 T5 T6 T7T3

SAN-YIH HWANG546

4. PERFORMANCE EVALUATION

This section compares the relative performance of the three commit certification
algorithms. We consider two primary performance metrics, namely, the abort ratio and
processing time complexity. The abort ratio is the number of aborted transactions divided
by the total number of commit requests submitted to the MSS. The processing time com-
plexity is the time needed to process a commit request. The desired algorithms should have
both a low abort ratio and low time complexity.

In the following, we compare the abort ratios of the MTC-SG, MTC-SQ, and MTC-
Hybrid algorithms.

Lemma1: If a commit request is accepted by MTC-SQ, it must also be accepted by MTC-
SG.

Proof: We will show that if a commit request is not accepted by MTC-SG, it is not accepted
by MTC-SQ either. When the commit request of a transaction T is rejected by MTC-SG, T
must introduce a cycle in the serialization graph. Since a cycle cannot be converted to a
sequential order, MTC-SQ will also reject the commit of T. £

Lemma 2: If a commit request is accepted by MTC-SG, it must also be accepted by MTC-
Hybrid and vice versa.

Proof: acceptance of MTC-Hybrid ⇒ ⇒ ⇒ ⇒ ⇒ acceptance of MTC-SG: MTC-Hybrid first uses
MTC-SQ. If a commit request passes the test of MTC-SQ, according to Lemma 1, it must
be accepted by MTC-SG. Otherwise, MTC-Hybrid just uses MTC-SG for the second test.

acceptance of MTC-SG ⇒⇒⇒⇒⇒ MTC-Hybrid: If a commit request is accepted by MTC-SG, it
will either pass the first test or eventually pass the second test of MTC-Hybrid, which is the
same as the test of MTC-SG. £

Theorem 1: Let A(S) denote the abort ratios induced by a commit certification algorithm S.
Then,

A(MTC-Hybrid) = A(MTC-SG) ≤ A(MTC-SQ).

Proof: This is straightforward from Lemmas 1 and 2. £

To gain some idea of the run-time performance of MTC-SG, MTC-SQ, and MTC-
Hybrid, we will compare their time complexities.

T T2T5T3T1 T4 T6 T7

ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 547

Lemma 3: Let n be the number of committed transactions. Assume that the number of
read/write operations in a transaction is constant. The time complexity of MTC-SG is O
(n2).

Proof: MTC-SG uses a serialization graph with n vertices to check whether an incoming
commit request will cause a cycle. Since the number of operations in a transaction is
constant, the time needed to check if two transactions conflict can also be considered as
being constant. Thus, the time complexity of MTC-SG is the cycle detection time, which is
O(n2). £

Lemma 4: Let n be the number of committed transactions. Assume that the number of
read/write operations in a transaction is constant. The time complexity of MTC-SQ is O(n).

Proof: Since MTC-SQ scans the committed transactions twice (to compute low and up), the
time complexity of MTC-SQ is O(n). £

Lemma 5: Let n be the number of committed transactions, and let p be the abort ratio of
MTC-SQ. Assume that the number of read/write operations in a transaction is constant.
The time complexity of MTC-Hybrid is O(n + pn2).

Proof: If a commit request passes the first test of MTC-Hybrid, it takes only O(n). Otherwise,
it has to take extra O(n2) for the second test. As the probability of failing the first test is the
same as the abort ratio of MTC-SQ, the time complexity of MTC-Hybrid is O(n + pn2). £

Theorem 2: Let T(S) denote the time complexity of a commit certification algorithm S.
Then,

T(MTC-SQ) ≤ T(MTC-Hybrid) ≤ T(MTC-SG).

Proof: This is straightforward from Lemmas 3, 4 and 5. £

From the above analysis, one can easily see that MTC-Hybrid is superior to MTC-SG
under all circumstances because it has the same abort ratio but lower time complexity.
Regarding MTC-Hybrid and MTC-SQ, MTC-Hybrid is actually reduced to MTC-SQ when
data contention is 0 (i.e., all commit requests are granted by MTC-SQ). Thus, it makes no
differences which one is chosen. However, when the data contention becomes higher, it is
not clear which approach becomes dominant. The answers to the following two questions
may help us decide.

Q1: Is the abort ratio of MTC-SQ very close to that of MTC-Hybrid (MTC-SG)?
Q2: Is the complexity of MTC-Hybrid very close to that of MTC-SQ?

If the answer to Q1 is yes for the desired operating region, then we should just use
MTC-SQ because it has low processing overhead and sacrifices little in terms of the abort
ratio. In contrast, if the answer to Q2 is yes, then one should just choose MTC-Hybrid
because it has a lower abortion ratio and only incurs a little higher time complexity.

SAN-YIH HWANG548

To answer the above two questions, we designed a simulation model to test the per-
formance of the three algorithms. Table 1 describes the parameters defined in the simula-
tion model and their settings. To exercise a particular system load, we first commit a fixed
number of transactions (200 in our base settings), and then use the proposed commit certi-
fication algorithms to evaluate the commit requests of a number of randomly generated
transactions. Note that these parameter settings, such as database size, may be smaller than
we would find in practice. This is quite common in database performance evaluation and is
a must in order to obtain performance results within a reasonable amount of time [4]. With
proper system scaling, many factors, such as data contention, can model practical situations.
Thus, the performance results obtained from the smaller system can reflect the performance
of a larger system.

Table 1. System parameter settings.

Note that resource contention is not considered in this paper. Thus, the various sys-
tem variables, such as CPU time, disk access time, and communication time, are not modeled.
While these system parameters may affect some performance metrics, such as response
time and throughput, they are irrelevant to the abort ratio, the primary performance metric
considered in our experiments.

Data collection in the experiments was based on the method of replications. Each
experiment was repeated several times via different random seeds to obtain a 95% confi-
dence interval. The following figures only show the mean values of the measures.

We first evaluated the effect of data contention on the performance of the proposed
three algorithms. Variation in data contention was achieved by changing the number of
write operations in each transaction. Fig. 6 shows the abort ratios under the three commit
certification algorithms. Overall, as the data contention increased, the abort ratio increased.
In an environment where transactions seldom update data, as expected, the three algorithms
all performed very well with the abort ratio being close to 0. When transactions were
update-intensive, the three algorithms again had similar performance. As a matter of fact,
in an environment where transactions write to all the data they read, i.e., the number of read
operations in a transaction = the number of write operations in a transaction, the abort
ratios of all three algorithms became the same. This is because, whenever a committing
transaction T conflicts with any committed transaction T ', a cycle involving solely T and T '
in the serialization graph exists. Thus, T has to be aborted by all three algorithms. In
contrast, if T does not conflict with any committed transactions, the commit request of T
will be granted by all three algorithms. This explains why the abort ratios of all three
algorithms are the same under this extreme condition.

retemaraP sgnitteS

eziSesabataD segap9604

noitcasnarTanisnoitarepOdaeRforebmuN 6

noitcasnarTanisnoitarepOetirWforebmuN 6,5,4,3,2,1,0

snoitcasnarTdettimmoCforebmuN 002

ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 549

As can be seen from Fig. 6, when transactions did incur some but not many updates,
MTC-Hybrid and MTC-SG performed significantly better than MTC-SQ. To see how the
three algorithms behave under different system loads, we repeated the same experiment
under various environments with all the parameter settings being the same except for the
number of committed transactions. Fig. 7 shows our experimental results with the number
of committed transactions being set to 70 to simulate an environment with a light load. It
can be seen that all three algorithms performed approximately the same even when transac-
tions comprises medium number of updates. This implies that a light transaction load has
less impact on the difference in performance of the three algorithms.

Fig. 6. Abort Ratio with Base Parameter Settings.

1

0.8

0.6

0.4

0.2

0

0 1 2 3 4 5 6

ab
or

t r
at

io

Number of Write Operations

We then evaluated the effect of data contention on the running time of the three
algorithms. Again, we varied the number of write operations in each transaction to reflect
the effect of data contention. Time complexity was measured by actually collecting the
execution times of 1000 randomly generated commit requests on a Sun IPC workstation.
The time unit was one 60th of a second.

Fig. 8 shows the running time of the three algorithms. The running time of MTC-SQ
was always lower and insensitive to data contention. Comparing MTC-SG and MTC-Hybrid,
one can find that MTC-Hybrid consistently took less time than MTC-SG.

Fig. 7. Abort Ratio with Light System Load.

1

0.8

0.6

0.4

0.2

0

0 1 2 3 4 5 6

Number of Write Operations

ab
or

t r
at

io

MTC-SG
MTC-Hyboid
MTC-SQ

SAN-YIH HWANG550

The choice of commit processing algorithm depends on the tradeoffs between the
transaction abort ratio and algorithm running time as well as the system’s operating region.
In the following, we will suggest some guidelines for determining the best algorithm for
different operating regions:

• In a read intensive environment, MTC-SQ and MTC-Hybrid are equally good.
• In an update intensive environment, MTC-SQ becomes the best choice.
• When the workload is light, i.e., the number of transactions executed within each

broadcasting interval is small, MTC-SQ should be selected as it has the least run-
ning time and performs as well as the other two algorithms.

• When the workload becomes heavier and contains a mix of read-only and update
transactions, there is no clean conclusion on which algorithm is the best. Under
such an environment, MTC-Hybrid has a lower abort ratio while MTC-SQ incurs
less processing time. Thus, it is up to the administrator to decide which factor is
considered more important for the applications and/or organization.

5. EXTENSION AND DISCUSSION

In this section, we discuss issues related to extending our work to a more general
environment, where multiple MSSs communicate with a single database server, as shown
in Fig. 9. In such an environment, it is the database server, rather than the MSS, that handles
commit requests. The MSSs serve as brokers in the sense that they just passes requests
from mobile hosts on to the database server. Furthermore, this environment has the fol-
lowing characteristics that are different from those of the model we discussed in section 2.

1. Each MSS may have a different broadcasting interval.
2. A mobile host may move from the cell of a MSS to that of another while executing

a transaction.
3. A mobile host may miss the broadcasts of some invalidation reports voluntarily or

involuntarily.

There is a tradeoff in the length of the broadcasting interval and the degree of diver-
gence in the cached data. If the length of the broadcasting interval is short, then the cached
data is quite new, and according to our algorithm, a transaction is less likely to be aborted
(because the set CT is small). However, the incurred disadvantage is that more downlink

Fig. 8. Running Time of 1000 Transactions with Base Parameter

1000

800

600

400

200

0
0 1 2 3 4 5 6

Number of Write Operations

ru
nn

in
g

tim
e

MTC-SG
MTC-Hytoid
MTC-SQ

ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 551

communication is needed and mobile hosts have to listen more frequently to the data,
which in turn consumes more battery power. Due to this tradeoff, it may be advantageous
for the length of the broadcasting interval of an MSS to be decided based on the access
pattern of its covering mobile hosts.

Since each MSS may have a different broadcasting interval, it becomes possible for a
moving mobile host to never receive an invalidation report even if it listens to the broad-
casting channel all the time. This happens when a mobile host constantly moves and stops
coverage of each MSS before receiving its broadcast. One way to solve this problem is to
constrain the length of the broadcasting interval in each MSS such that a mobile host
always receives at least one invalidation report during its stay in the cell covered by an
MSS.

If a mobile host moves from the cell of an MSS to that of another with a different
broadcasting interval during the execution of a transaction, problems may occur, as shown
by the following example:

Example 4: Suppose the following transaction program is executed by two distinct mobile
hosts:

r(x) x = x + 1 w(x) commit.

Let T1 denote the first execution carried out by the mobile host m1, and let T2 be the second
execution by m2. Initially x = 0, and x is cached by both mobile hosts.

At time t0, m2 receives an invalidation report at MSS2. At time t1, another mobile host
m1 executes T1 at MSS1. Then, m2 moves to MSS1 and executes T2. The following depicts
the scenario. The shaded rectangles represent the broadcasts of invalidation reports.

Fig. 9. A more general mobile environment.

Database Server

MSS1 MSSn

Fixed Network

mobile hosts

. . .

mobile hosts

. . .

t0

MSS1

MSS2

T1 T2

t1

m1

m2

SAN-YIH HWANG552

When m2 requests to commit T2, T2 could be considered to have read the data written
by T1 (since m2 executes T2 after the broadcast of MSS1). Thus, T2 will commit successfully,
and the final result of x will become 1, which is not acceptable.

The problem in the above example is that the database server treats T2 as coming
from MSS1 whereas it should be viewed as coming from MSS2. (Note that m2 received its
last invalidation report from MSS2.) To handle this case as well as the case where a mobile
host may skip some broadcasted invalidation reports, the timestamp of the last invalidation
report a mobile host receives has to be kept. In addition, the database server has to main-
tain the set of transactions committed after last, the earliest of all MSS’s last broadcast
times. Consider the previous example; to validate the commit request of T2, operations of
T1 have to be taken into account even though T1 commits before the current broadcast of
MSS1. When the commit request of a transaction executed by some mobile host h arrives,
the database server first compares the timestamp of the last invalidation report h receives
with last. If the timestamp is earlier than last, we conclude the time at which h receives its
last invalidation report is too old so that transactions committed around that time are not
maintained by the database server any more. Thus, the committing transaction T has to be
aborted. Otherwise, the committing transaction is compared to the committed transactions
in a manner similiar to that previously discussed. Fig. 10 shows the modified algorithm of
MTC-SG. Other algorithms can be modified similarly.

{ CT is the set of transactions committed after last}
{ SG is the serialization graph of CT.}
{ lastT is the time the mobile host of T receives its last invalidation report.}
if lastT < last then reject this request;
else begin

for each transaction T ' in CT do
begin

if the read set of T overlaps the write set of T '
then if (T ' is committed before lastT) or

(T ' and T are from the same mobile host)
then add T ' → T to SG;
else add T → T' to SG;

if the write set of T overlaps the read set or write set of T '
then add T ' → T to SG;

end
if SG contains any cycle then
begin

eliminate all edges induced by T from SG;
reject the commit request;

end else
begin

CT ← CT ∪ {T};
accept the commit request;

end

Fig. 10. MTC-SG for handling the commit request of a Transaction T in a general environment.

ON OPTIMISTIC METHODS FOR MOBILE TRANSACTIONS 553

6. CONCLUSIONS

We have proposed a scheme for handling transactions optimistically in a mobile
environment. This scheme assumes that an invalidation report is broadcasted periodically.
Each mobile host listens to the broadcasted invalidation report, invalidates its cache, and
executes transactions submitted by the user. All the operations of a transaction except
commit are processed locally. Commit requests must be submitted to the database server
on the wired network for certification. Three algorithms, namely MTC-SG, MTC-SQ, and
MTC-Hybrid, for processing of commit requests by the MSS have been described and
compared. It has been shown via analysis and simulation that MTC-Hybrid outperforms
MTC-SG and takes less time under all circumstances. With respect to the performance of
MTC-SQ and MTC-Hybrid, it has been found that both have similar performance and pro-
cessing time when data contention is low. When data contention is higher, MTC-SQ has a
higher abort ratio while MTC-Hybrid incurs higher processing overhead. When data con-
tention becomes extremely high, both MTC-SQ and MTC-Hybrid have high abort ratios.
However, MTC-SQ needs less time for processing. Thus, MTC-SQ is superior in this case.

Our future work includes exploring the transaction management issue in a mobile
environment containing low-end mobile hosts, i.e., those that do not cache data. In such an
environment, data is delivered to mobile users by the MSS via broadcasting. Existing pro-
tocols either do not handle transactions or do not consider the limitations of mobile systems
(e.g., the Datacycle approach [11]). This suggests the need for new protocols.

REFERENCES

1. S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast disks: data manage-
ment for asymmetric communication environments,” in Proceedings of ACM SIGMOD
Interational Conference on Management of Data, 1995, pp. 199-210.

2. S. Acharya, M. Franklin, and S. Zdonik, “Prefetching from a broadcast disk,” in Pro-
ceedings of 12th Interational Conference on Data Engineering, 1996, pp. 276-285.

3. S. Acharya, M. Franklin, and S. Zdonik, “Balancing push and pull for data broadcast,”
in Proceedings of ACM SIGMOD Interational Conference on Management of Data,
1997, pp. 183-194.

4. R. Agrawal, M.J. Carey, and M. Livny, “Concurrency control performance modeling:
Alternatives and implications,” ACM Transactions on Database Systems, Vol. 12, No.
4, 1987, pp. 609-654.

5. D. Barbara and T. Imielinski, “Sleepers and workaholics: Caching strategies in mobile
environment,” in Proceedings of ACM SIGMOD Interational Conference on Manage-
ment of Data, 1994, pp. 1-12.

6. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery
in Database Systems, Addison Wesley Publishing Company, 1987.

7. B.Y. Chan, A. Si, and H. V. Leong, “Cache management for mobile databases: Design
and evaluation,” in Proceedings of the 14th Interational Conference on Data
Engineering, 1998, pp. 54-63.

8. A. Datta, A. Celik, J. Kim, and D. VanderMeer, “Adaptive broadcast protocols to sup-
port power conservant retrieval by mobile users,” in Proceedings of 13th Interational
Conference on Data Engineering, 1997, pp. 124-133.

SAN-YIH HWANG554

9. A. Elmagarmid, J. Jing, and O. Bukhres, “An efficient and reliable reservation algo-
rithm for mobile transactions,” in Proceedings of 4th Interational Conference on In-
formation and Knowledge Management, 1995, pp. 90-95.

10. C. Fong, J. Lui, and M. Wong, “Quantifying complexity and performance gains of dis-
tributed caching in a wireless network environment,” in Proceedings of 13th Interational
Conference on Data Engineering, 1997, pp. 104-114.

11. G. Herman, G. Gopal, K. C. Lee, and A. Weinrib, “The datacycle architecture for very
high throughput database systems,” Technical Report, Bell Communications Research
Inc., NJ, 1987.

12. Y. Huang, Prasad Sistla, and O. Wolfson, “Data replication for mobile computers,” in
Proceedings of ACM SIGMOD Interational Conference on Management of Data, 1994,
pp. 13-24.

13. T. Imielinski and B. R. Badrinath, “Mobile wireless computing: Challenges in data
management,” Communications of the ACM, Vol. 37, No. 10, 1994, pp. 18-28.

14. T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Data on air: organization and access,
” IEEE Transactions on Knowledge and Data Engineering, Vol. 9, No. 3, 1997, pp.
353-372.

15. J. Jing, O. Bukhres, and A. Elmagarmid, “Distributed lock management for mobile
transactions,” in Proceedings of the 15th Interational Conference on Distributed Com-
puting Systems, 1995, pp. 118-126.

16. J. Jing, O. Bukhres, A. Elmagarmid, and R. Alonso, “Bit-sequences: A new cache in-
validation method in mobile environments,” Technical Report, Department of Com-
puter Science, Purdue University, IN, 1995.

17. W. C. Lee and D. L. Li, “Using signature techniques for information filtering in wire-
less and mobile environments,” Distributed and Parallel Databases: An International
Journal, Vol. 4, No. 3, 1996, pp. 205-228.

18. S. Mahajan, M. Donahoo, S. Navathe, M. Ammar, and S. Malik, “Grouping techniques
for update propagation in intermittently connected databases,” in Proceedings of the
14th Interational Conference on Data Engineering, 1998, pp. 46-53.

19. E. Pitoura and B. Bhargava, “Maintaining consistency of data in mobile distributed
environments,” in Proceedings of the 15th Interational Conference on Distributed
Computing Systems, 1995, pp. 404-413.

San-Yih Hwang (¶À¶À¶À¶À¶À¤T¤T¤T¤T¤T̄ q̄q¯q̄q¯q) received the B.S. and M.S. de-
grees from National Taiwan University, Taiwan, in 1984 and 1988,
respectively, and the Ph.D. degree from the University of Minnesota,
Minneapolis, in 1994, all in computer science.

He is presently an associate professor in the Department of
Information Management, National Sun Yat-Sen University, which
he initially joined in 1995. Between 1994 and 1995, he was with
the Computer and Communication Laboratory, Industrial Technol-
ogy Research Institute (CCL/ITRI), Taiwan. His current research
interests include workflow systems, data management aspects of
mobile computing, and parallel IO.

