
Consulting past exceptions to facilitate workflow

exception handling

San-Yih Hwanga,*, Jian Tangb

aDepartment of Information Management, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
bDepartment of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1B 3X5

Accepted 30 September 2002

Abstract

In this paper, we propose an architecture model that deals with both expected and unexpected exceptions in the context of

workflow management. Expected exceptions and their handling approaches are specified by ECA rules, while cases of

unexpected exceptions are characterized by their features and resolution approaches. The handling of unexpected exceptions is

then assisted by the system providing information about how recent similar cases were resolved. The ways in which the

previous exception cases were handled provides useful information in determining how to handle the current one. Quantifying

the similarity of exception cases is described, and three algorithms for efficiently searching for similar exception cases are

proposed and evaluated both theoretically and by experimenting with synthetic data sets.

D 2002 Elsevier B.V. All rights reserved.

Keywords: Workflow exceptions; Workflow management; Exception handling; Similarity matching

1. Introduction

Workflow management systems (WFMSs) support

the execution of business processes. A business proc-

ess has a market-centred aim of fulfilling a business

contract or satisfying a customer’s needs [13], and

typically, it is controlled by many factors, including

the description of the constituent activities, their

control/data flow, the potential participants, the organ-

ization model and the referenced data [31]. A WFMS

separates the specification of business processes, or

so-called workflow types, from their execution and

provides a convenient and powerful means of specify-

ing a business process and controlling its executions.

However, it is well recognized that defining a work-

flow that represents all properties of the underlying

business process is difficult [10]. Moreover, since the

formulation of business processes occurs at a high

conceptual level, workflows have to adapt rapidly to a

changing environment, resulting in executions that

deviate from the predefined plan.

The process model defined at specification simply

represents a standard case, and WFMSs should

provide the flexibility to support run-time modifica-

tion to the defined workflows so as to handle non-

standard cases, or so-called exceptions. Some types

of exceptions are expected because they are known

to occur occasionally or periodically, and their char-

0167-9236/$ - see front matter D 2002 Elsevier B.V. All rights reserved.

doi:10.1016/S0167-9236(02)00194-X

* Corresponding author.

E-mail address: syhwang@mis.nsysu.edu.tw (S.-Y. Hwang).

www.elsevier.com/locate/dsw

Decision Support Systems 37 (2004) 49–69

acter and the associated way of handling them can be

completely decided at build-time. Other exceptions are

unexpected since they result from unpredictable

changes in the environment, being unable to decide

how to handle the exception, or from some other factor

that simply cannot be predicted at design-time. It has

been observed that exceptions occur rather frequently

in real working environments [11,27]. This highlights

the importance of exception handling in the context of

workflow management.

1.1. Related work

The need for handling workflow exceptions has

been identified by several researchers and research

projects in recent years (e.g. EXOTICA [1], METEOR

[27], ADOME [7,8], ADEPT [23,24], WAMO [11],

and WIDE [6]). Most research has focused on the

handling of expected exceptions whose character

can be anticipated at build-time. To keep the logic

of the normal process clean, exceptions and their

handling approaches are usually not incorporated

into standard workflow types. Instead, another more

flexible mechanism is adopted to support explicit

modelling of these exceptions. Two approaches that

are typically used to implement this mechanism are

the extended transaction model and event–condi-

tion–action (ECA) rules. An extended transaction

model requires the workflow designer to specify

some properties of the constituent activities and

sub-workflows, such as compensatible, retriable,

and alternating activities. When an exception occurs,

the workflow system handles it according to the

given attribute values of the involved activities or

sub-workflows. A typical situation would be to roll-

back activities to a particular point by executing

the corresponding compensating activities in reverse

order. An alternative path would then be taken

when continuing the execution [1,12,21]. Another

approach is to use ECA rules, or so-called triggers

[6–8]. The ECA paradigm describes an exception

type as a particular ECA rule. The event and the

condition of an ECA rule describe the situation

under which the associated exceptions occur, and

the action part defines the operations that would

resolve these exceptions. Possible operations include

notifying responsible persons, ignoring exceptions,

retrying the activity that causes exceptions, partial

rollback followed by forward execution, adding some

extra activities, deleting some planned activities, or

any change to the part of the workflow definition

that is not yet executed. Recently, Hagen and Alonso

[14] proposed a framework that integrates rules1

and an extended transaction model for handling work-

flow exceptions. Participants in the ADEPT project

also proposed an approach which involved evaluating

the correctness of changes to workflow schema

[23,24]. While previous work has focused on provid-

ing flexible mechanisms for defining exceptions at

build-time, there is a need to handle exceptions that

are not defined at build-time. These exceptions are by

no means uncommon and, in some cases, could be

substantial.

Cases not specified by the defined workflow

types require special treatment. Even though a

WFMS may be capable of executing any exception

resolution plan that is specified in a particular

format, deriving an appropriate solution for handling

a given exception is currently conducted in a

manual, ad hoc manner, which involves numerous

meetings and discussions with authorized and

knowledgeable persons. We proposed [29] providing

a query interface to enable users to browse the

information related to the workflow instance to

which an exception occurs. In the proposal, a query

is specified in terms of attributes of constituent

activities which include, for example, input and

output values, the date and time, and details of

the performers. By examining the attribute values

returned by a number of queries, the user makes an

appropriate decision on how to handle the current

exception. Chiu et al. [8] proposed the Human

Interface Manager for handling unexpected excep-

tions. This device handles exceptions by listing

common approaches that serve as suggested reso-

lutions, and allows users to visualize all the recent

methods that have been used to resolve exceptions.

However, exactly how to provide a list of suitable

resolutions for a given exception in a changing

environment was not discussed in detail.

1 In their work, the exception model in C++ or Java, rather than

ECA rules, is used to combine with an extended transaction model.

However, we consider this exception model to be the same as ECA

rules in spirit.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6950

1.2. Contributions

To further facilitate the decision-making process,

in this paper we propose an architecture model that

deals with both expected and unexpected exceptions

with emphasis on the handling of unexpected excep-

tions. Specifically, we propose an intelligent system

that resolves an unexpected exception in the follow-

ing way. It first searches on a set of prestored

exception cases for the similar ones. Then by refer-

encing these similar cases and how they were

resolved previously, it determines the approach that

is most appropriate for the current one. In this paper,

we will concentrate on the first job, which is chal-

lenging in the workflow context. Specifically, we will

describe the kind of information required about

exceptions, the similarity metrics tailored to workflow

exceptions, and the algorithms using these metrics for

similarity searching. We also present results from

applying the algorithms to synthetic data sets, which

demonstrate the relative performance of the different

algorithms.

The remainder of the paper is structured as fol-

lows. Section 2 illustrates the need for handling

unexpected exceptions by showing a real-world

example. Section 3 is devoted to the description of

the architecture model adopted in this paper for

handling both expected and unexpected exceptions.

Section 4 describes the types of information about

previous unexpected exceptions and the types of

queries used to search these exceptions. In Section

5, we formally define a similarity measure between

exceptions and discuss how to compute the similarity

between two exceptions under various conditions. In

Section 6, we develop algorithms for searching for

those previous exception instances that are similar to

a given one. We test and compare these algorithms in

Section 7. We conclude the paper in Section 8 by

summarizing the main results and identifying issues

for further study.

2. A motivating example

The authors have been involved in the investiga-

tion of various business processes that are used by the

National Health Insurance Bureau (NHIB) of Taiwan.

The NHIB is a government-sector business whose

primary mission is to execute the National Health

Insurance Program in Taiwan, and consequently, the

vast majority of clinics and hospitals in Taiwan have

contracts with the NHIB. According to a recent

survey, Taiwan has the highest average outpatient

visits per capita in the world (see http://www.nhi.

gov.tw/english/englsih2-7.htm). Thus, it is imperative

to closely review the insurance claim process to

prevent the misuse of medication. The current insur-

ance claim process includes the following four

sequential steps:

1. Receiving monthly insurance claims from a

medical institute.

2. Correcting errors in these claims.

3. Evaluating these claims.

4. Filing a payment to the medical institute.

Note that each step is complicated and comprises

many activities. Usually a single processing instance

takes up to 60 days to complete. To ensure that

medical institutes receive their payments as sched-

uled, the following prepayment policy has been

enforced:

(A) If an insurance claim case does not complete

within 30 days, the relevant medical institute

automatically receives up to 90% of their total

claims.

(B) If an insurance claim case does not complete

within 60 days, the medical institute receives the

remaining payments as they are claimed.

However, if after the completion of a case it is

found that the total insurance claims amount to less

than the prepayment, another process is invoked to

request a refund from the medical institute.

It is clear that the insurance claim process is very

important to the NHIB. On one hand, the entire

process has to be conducted carefully (and is there-

fore time-consuming) so as to prevent the misuse of

precious medical resources. On the other hand, the

turnaround time of this process is expected to be

short to meet the financial needs of the medical

institutes and prevent invoking the prepayment and

refunding processes. To achieve both goals, a prom-

ising approach is to employ WFMSs to both speed

up and better coordinate the process. To do so, an

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 51

 http:\\www.nhi.gov.tw\english\englsih2-7.htm
 http:\\www.nhi.gov.tw\english\englsih2-7.htm

unambiguous specification of the activities as well

as their coordination is vital. However, we have

found that some activities simply cannot be speci-

fied clearly. As an example, consider the second

‘‘correcting errors’’ step of the payment process.

This can be further decomposed into substeps shown

in Fig. 1.

The staff members at the NHIB first try to correct

errors that appear in the submitted claims. Possible

errors include missing data entries, contradictory data

entries (e.g. by switching the start and ending dates),

and incompatible data formats. Errors are corrected,

for example, by making telephone calls to the hospital

to obtain the missing data, or by searching other

sources to allow filling in or correcting of the data

provided. However, if errors exist that cannot be

resolved easily, all the claims are returned to the

claiming hospital. The hospital is then required to

correct the data themselves and return the corrected

claims within a few days. In this case, the prepayment

mentioned above has to be subsequently postponed.

In fact, an official policy limits the duration of

‘‘Hospitals’ Correct Data’’ to no more than 7 days—

if the NHIB does not receive the corrected claims

within 7 days, the entire case is closed. However, we

noticed that NHIB staff members do not usually

follow this rule strictly. By considering the location

of the medical institute and the amount of errors

incurred, they tend to extend the deadlines to up to

15 days. Furthermore, frequently one or two

reminders are sent to the medical institute before the

deadline. If the corrected claims are returned quickly

enough, the payment date is often not even changed.

It is clear at this point that the ways to handle

‘‘Correct Data Entries’’ and ‘‘Hospitals’ Correct

Data’’ are flexible and therefore cannot be specified

exactly. According to our recent survey at the south

office2 of the NHIB, there were about 1000 cases with

erroneous data entries per month. Among them, about

10% cannot be corrected by NHIB staff and must be

returned to the medical institutes for correction. We

view these cases as exceptions, and because their

character and handling approaches cannot be well

defined, we further regard them as unexpected excep-

tions. These exceptions constitute a large amount of

information if they are accumulated over several

years, and this information can provide valuable

insight into determining how to best handle future

exceptions.

3. The architecture model

Fig. 2 depicts the reference architecture adopted

in this paper. Administrators define a workflow type

by describing its constituent activities and the (con-

trol/data) interdependencies between them via some

workflow definition tool. This information is stored

in the workflow database (WFDB). Formally, a

workflow type is a tuple hV, E, F1, F2,. . ., Fk, Pi,
where V is a set of activities; E is a set of

transitions, each of which embodies a control

Fig. 1. Subprocess of ‘‘correcting errors’’ in the insurance claim process.

2 The NHIB has totally six branches in Taiwan. The

information provided here concerns only one office.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6952

dependency between a pair of activities; Fi, 1V
iV k, is a function that maps an activity to its ith

attribute value; and P is a function that maps a

transition to its predicate. Possible attributes of an

activity include qualified participants, applications

capable of executing this activity, input data, output

data, the precondition before the activity can be

executed, and the postcondition that must be sat-

isfied after the activity completes. Note that an

activity can be defined as another workflow type,

thereby forming a nested process definition. Another

function Fj can be used to specify such a sub-

workflow definition. The predicate of a transition

defines the condition under which the transition is

to occur. The workflow engine coordinates the

workflow execution in such a way that all con-

straints—as specified in Fi and P—are enforced.

Note that an activity can be conducted by either a

human operator or a computer program. The inter-

action between the performer of an activity and the

workflow engine is enabled by either a human

interaction agent (in the case of a human activity)

or an application agent (in the case of a compu-

terized activity). An agent monitors the execution of

its activity and reports its status to the workflow

engine when necessary. In addition to handling

human activities, human interaction agents also help

manage process steps, such as starting a new

process instance, or suspending or terminating an

existing process. When a user detects that relevant

events have occurred in the outside world, it inter-

acts with the workflow engine through a human

Fig. 2. The reference architecture (WFDB is the workflow database, and EHDB is the exception handler database).

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 53

interaction agent to ensure the proper handling of

the effects of these events.

Under normal circumstances, agents successfully

execute their associated activities and report the

execution results to the workflow engine. The

workflow engine will store these results in the

output data, evaluate the predicates associated with

the transitions that follow, and invoke the activities

that are next executed. However, when an agent

detects the occurrence of an exception to the

activity it executes or an event in the outside world

that affects the ongoing process, it throws an

exception [19]. To properly handle the exception,

the workflow engine then uses the shaded compo-

nent in Fig. 2, the Exception Handler, to determine

a handling approach.

To determine a suitable approach for handling an

exception, the exception handler performs a two-

step procedure. First, it consults the rule base that

contains a set of rules for handling exceptions. Each

rule describes how to handle a specific exception

type. More precisely, a rule is represented as a four-

tuple hscope, event, condition, actioni. The scope

specifies an activity (which could be an atomic

activity or a subprocess) to which this rule is

applied. The event denotes the type of exceptions

that this rule is designed to handle. The condition

describes the predicate which, when satisfied, trig-

gers the process defined in the action. The process

defined in the action part of a triggered rule is a

workflow type that is designed to replace the

activity specified in the scope. When the execution

of an activity throws an exception, the workflow

engine first searches for the rules with a scope

equal to this activity and an event equal to the type

of this exception. If no such rule exists or none of

the rules satisfy their respective conditions, the

workflow engine then searches another set of rules

with a scope that is the immediate ancestor of this

activity in the process definition. The same proce-

dure continues until either a rule is triggered or no

ancestor is found. After identifying a triggered rule,

the exception handler sends a hscope, actioni pair to
the workflow engine, which defines an exception

handling approach. The workflow type defined in

the action serves as a fixing process that is used to

fix the activity specified in the scope. Therefore, the

workflow engine will first execute the workflow

defined in the action and resume execution of the

original process by assuming that the replaced activity

specified in the scope has been successfully executed.

To execute the fixing process specified in the action,

some workflow data values changed during the failed

activity specified in the scopemay have to be undone to

eliminate its effect. This would require a recovery

procedure that traverses the workflow log in a manner

similar to that used to handle transaction failure.

Interested readers are referred to our previous work

[29] for details about such a recovery. If, however, the

execution of the fixing process throws a new exception,

the same rule-searching procedure is conducted follow-

ing the rules pertinent to this process. To avoid repeated

spawning of exceptions (so that acceptable workflow

completion time will not be jeopardized), one may

choose to associate only those rules that handle general

exceptions, such as machine failures, to a fixing proc-

ess. In case any other exception occurs to the fixing

process, the system resorts to humans for proper

provision to ensure its semantics.

On the other hand, if none of the rules are

triggered, the second step is taken. Assume that

an exception handler database (EHDB) contains the

feature and the handling approach for each unex-

pected exception that occurred previously. The

exception handler will search the EHDB for pre-

vious exception cases that are similar to the current

one in their features. The approaches used to

resolve those exceptions will be presented to the

user as alternatives for handling the current excep-

tion. Once an alternative is chosen, possibly with

some modifications, it will be given to the work-

flow engine for implementation. The feature of this

exception and its handling approach will be inserted

into the EHDB as a new record. Formally, we

define an exception record as a triplet hfeature,
action, scopei, where the feature describes the

characteristics of the exception, such as the type

of the exception, the activity to which the exception

occurs, and the time and place that this exception

occurred, and the action specifies a workflow type

that is used to fix the activity specified in the scope.

By examining the haction, scopei pairs of the

exceptions with similar features, the person respon-

sible then determines a specific haction, scopei pair

that is appropriate for handling the current excep-

tion. Finally, this haction, scopei pair is sent back to

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6954

the workflow engine for execution. The complete

algorithm that the exception handler uses to handle

a given exception is shown below.

Referring to the above algorithm, to handle a given

exception x, the Handling-Exception(x) procedure is

invoked. We assume an exception is a structure that

records information about the exception, including the

activity occurring (x.activity) and the event type of

exception (x.event). Handling-Exception(x) first

searches the rule base by initiating the procedure

Search-RuleBase(x.activity, x.event). Procedure

Search-RuleBase(t, e) first searches for the rules with

a scope and event equal to t and e, respectively. The

conditions of these rules are then evaluated to deter-

mine whether any rule can be triggered. Note that we

do not consider the possibility that more than one rule

is triggered. When this does happen, we follow the

static priority scheme, which is the most popular

scheme among expert system implementations, in

choosing a rule to fire [22]. The static priority scheme

lets the designer determine an absolute value for each

rule as its priority and fires the fireable rule with the

highest priority. We feel that the static priority scheme

is suitable in the context of workflow exception

handling because of its deterministic behavior and

simplicity. On the other hand, if no rule is triggered, a

recursive call Search-RuleBase(t.parent, e) is invoked

to search for the rules with a scope equal to the

immediate ancestor of t in the workflow type. This

procedure continues until either a rule is triggered or

the top-level process is reached. If, however, the

current exception cannot be handled by the rule base,

this exception is designated an unexpected exception.

In this case, we resort to using human experts for

determining an appropriate hscope, actioni pair, with
support from the system that provides previous reso-

lution approaches (E) in handling similar exception

cases.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 55

4. Characterizing unexpected exceptions and their

queries

To locate similar previous exception cases, we

have to elaborate the attributes associated with fea-

tures in an exception record. An exception case can be

described by many attributes, including:

1. Status: This records the status of a workflow

instance and its constituent activities. The possible

statuses of a workflow instance include initiated,

running, suspended, terminated, active, and com-

plete, while an activity may be in one of the

following statuses: inactive, active, suspended,

complete [31].

2. Activity: This attribute records the activity that

causes the exception.

3. Exception type: This is the semantic information

that describes the type of the exception, which

could be described by a set of user-defined

keywords.

4. Time: This denotes the time when the exception

occurs.

5. Participant: This attribute indicates the performer

of the activity that causes the exception.

6. Characteristic attributes: These include data val-

ues specific to a workflow type. For example, in

the NHIB’s claim handling process, there are

several specific attributes, including hospital,

amount claimed, and number of records claimed.

We call the first five attributes generic because

they are applicable to each workflow type. The

characteristic attributes, on the contrary, are specific

to a workflow type. While the generic attribute values

of exceptions are always recorded in NHDB, the

characteristic attributes need not to be stored entirely

due to performance consideration. When a workflow

type is just deployed, only generic attributes about

exceptions are recorded in NHDB. As time goes by

and it is found that users often query some character-

istic attributes values when determining the way to

handle an unexpected exception, these attributes are

added to the NHDB for subsequent exceptions. In

other words, the set of characteristic attributes

recorded in EHDB evolves.

Finding previous exception records that are similar

to the current one could be a subjective task, and

different agents may want to do different kinds of

similarity matching. For example, when a junior level

staff detects an exception, she may create an exception

record with feature being h(. . .),. . ., (level of staff:

junior),. . .i, intending to see how her peers handled

similar cases. But she may also be interested in

finding previous records of the form h(. . .),. . ., (level
of staff: senior),. . .i to see how senior staff handled

such cases.

There are two approaches to conduct similarity

matching. The first approach is that the agent itself

specifies a query record that she would like to find a

match for, and the exception handler just returns all

the records that exactly match this query record.

However, to make a proper decision, the agent

probably has to create and submit many records.

To further assist the decision making, we adopt a

second approach that allows the agent to specify a

criterion and let the exception handler to decide

which exception records are considered similar based

on this criterion. The issue here is how to specify a

criterion.

To precisely define the concept of similarity, we

incorporate concept hierarchies into our approach

[15]. A concept hierarchy is a partial general-to-

specific ordering of concepts. Several of the attributes

mentioned above can have their own concept hierar-

chies. For example, the nested definition of workflow

types provides a natural definition of the concept

hierarchy for the Activity. As the semantics are often

organized into a taxonomy of concepts that are

partially ordered, this taxonomy could serve as the

concept hierarchy for the Exception type. The organ-

ization hierarchy is an ideal candidate for the concept

hierarchy of Participant. Finally, Time values can be

further decomposed into year, month, day, and time.

In the case where there is no obvious concept hier-

archy associated with a quantitative attribute, a con-

cept hierarchy can be computed using an approach

that combines consecutive intervals in a recursive

manner based on some measurement [16,26].

To specify a criterion for conducting similarity

matching, a set of attributes that are considered

relevant in making decisions is first selected. We call

these attributes candidate attributes. The importance

of each candidate attribute is then specified. The set of

candidate attributes and their associated importance

enable the exception handler to calculate the distance

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6956

between two exception records. It can then rank the

exception records based on their distances to the

current exception record. Based on different criteria,

two kinds of similarity matching will be used.

4.1. Closeness matching

A closeness matching searches for a predefined

number of closest records to the current exception

record. The issue here is how to define the distance

between two records in the context of workflow

exception handling, and how to do the search ef-

ficiently. We will discuss this issue in detail in Sec-

tion 5.

4.2. Targeted-closeness matching (TC)

This kind of matching first specifies a subset of

feature attributes, termed target attributes. For each

target attribute, a set of values is specified. Only the

records with the values in the specified set for the

target attributes will be retrieved. A closeness match-

ing is then followed only on the retrieved records.

More precisely, a TC matching is a tuple hA, c, T, Pi
where A is the set of candidate attributes, c is the

current exception record, T={a1,. . ., av} is the set of

target attributes, and P={ p1,. . ., pv}, where for all i,

1V iV v, pi is a predicate defined on the domain of ai.

A record r is a target of a TC matching if for all i,

1V iV v, pi(r.ai) = true
3. A target matching is useful

when an agent wants to reference some records with

specific values for certain attributes.

4.3. Example

Consider the exception handling at ‘‘Hospitals’

Correcting Data,’’ a step for correcting errors in

NHIB’s medical insurance claim handling process.

To focus, we discuss only a particular type of excep-

tion, in which a hospital does not return their cor-

rected claims within a specified period. This type of

exception is termed ‘‘Claim returns expired,’’ which is

thrown periodically if the NHIB does not receive the

corrected claims as scheduled. Since the official

policy states that a hospital should correct errors and

return the corrected claims within 7 days, we can

design a rule that throws the ‘‘Claim returns expired’’

exception every two days after 5 days of sending

claims back to a hospital.

3 We assume that bi 1V iV v, a d a domain(ai), [pi(d) = true],

since otherwise it is pointless for the violating ai to be designated as

a target attribute..

Fig. 3. Various approaches for handling ‘‘Claim returns expired’’ exceptions.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 57

There are four possible approaches to handle this

exception:

1. Simply ignoring it and continuing waiting for the

arrival of the corrected claims.

2. Sending a gentle reminder to the hospital and then

continuing waiting for the arrival of the corrected

claims.

3. Sending a warning message to the hospital,

informing the supervisor, and then continuing

waiting for the arrival of the corrected claims.

4. Closing the case of processing these claims. The

hospital has to reinitiate the insurance claim

handling process in the future.

These four approaches are depicted graphically in

Fig. 3. However, exactly which options should be

chosen under various conditions are not officially

recognized, and therefore these handling approaches

will not be summarized in the rule base.

Assume that previous experiences in handling

exceptions have been stored in the EHDB, which is

partly shown in Table 1.

The EHDB could store thousands of records

about the features and handling approaches for

Claim returns expired, and the agent is interested

in only those records that have similar feature values.

Suppose a clerk Liza at NHIB is assigned to handle

an emerging claim returns expired exception with

Table 2

Current exception and the relevant exception records

Feature Action Scope

Exception Time Participant Activity Hospital Days

delayed

(a) The current exception

Claim returns expired 2002-2-10 Liza Hospitals’ correcting data CSH 7

(b) Exception records listed in ascending order of their importances

Claim returns expired 2001-11-4 (3) John (3) Hospitals’ correcting data CSH (0) 7 (0) Fig. 3b Hospitals’ correcting data

*Claim returns expired 2002-1-4 (2) John (3) Hospitals’ correcting data HDH (1) 7 (0) Fig. 3b Hospitals’ correcting data

Claim returns expired 2001-12-20 (3) Beth (1) Hospitals’ correcting data DLH (2) 7 (0) Fig. 3c Hospitals’ correcting data

Claim returns expired 2001-12-14 (3) Ann (1) Hospitals’ correcting data VMH (2) 5 (1) Fig. 3a Hospitals’ correcting data

*Claim returns expired 2002-1-13 (1) Rita (3) Hospitals’ correcting data CSH (0) 11 (3) Fig. 3c Hospitals’ correcting data

*Claim returns expired 2002-2-20 (2) Mary (1) Hospitals’ correcting data HDH (1) 11 (3) Fig. 3d Claim handling

Claim returns expired 2001-5-12 (3) Anna (3) Hospitals’ correcting data HDH (1) 13 (3) Fig. 3c Hospitals’ correcting data

Claim returns expired 2001-9-3 (3) Rita (3) Hospitals’ correcting data VMH (2) 17 (3) Fig. 3d Claim handling

Claim returns expired 2001-11-3 (3) Rita (3) Hospitals’ correcting data CYC (2) 9 (3) Fig. 3d Claim handling

Table 1

A sample EHDB

Feature Action Scope

Exception Time Participant Activity Hospital Days

delayed

. .

Claim returns expired 2001-5-12 Anna Hospitals’ correcting data HDH 13 Fig. 3c Hospitals’ correcting data

Claim returns expired 2001-9-3 Rita Hospitals’ correcting data VMH 17 Fig. 3d Claim handling

Claim returns expired 2001-11-3 Rita Hospitals’ correcting data CYC 9 Fig. 3d Claim handling

Claim returns expired 2001-11-4 John Hospitals’ correcting data CSH 7 Fig. 3b Hospitals’ correcting data

Claim returns expired 2001-12-14 Ann Hospitals’ correcting data VMH 5 Fig. 3a Hospitals’ correcting data

Claim returns expired 2001-12-20 Beth Hospitals’ correcting data DLH 7 Fig. 3c Hospitals’ correcting data

Claim returns expired 2002-1-4 John Hospitals’ correcting data HDH 7 Fig. 3b Hospitals’ correcting data

Claim returns expired 2002-1-13 Rita Hospitals’ correcting data CSH 11 Fig. 3c Hospitals’ correcting data

Claim returns expired 2002-2-20 Mary Hospitals’ correcting data HDH 11 Fig. 3d Claim handling

. .

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6958

attributes shown in Table 2(a). To make a proper

decision, she is interested in knowing how previous

cases were handled. For this purpose, she has deter-

mined that two generic attributes: Time and Partic-

ipant, and two characteristic attributes: Hospital and

Days delayed are candidate attributes and that their

importance are prioritized by the following order:

Days delayed, Hospital, Participant, and Time. Fig.

4 depicts the example concept hierarchies of these

four candidate attributes. The exception records are

listed in ascending order of their importance (smaller

values indicate higher importance), as shown in Table

2(b). Note that the number in the parenthesis next to

an attribute value is the level number4 of the least

common ancestor of this value and the corresponding

attribute value of the current exception. From the list

displayed in Table 2(b), Liza decides to adopt the

action by John, as the corresponding records are the

closest to the current record. Thus, she handles this

case by sending a reminder message to CSH (the

approach depicted in Fig. 3b). This is an example of

closeness matching.

Now suppose Liza instead wants to find out how

her colleagues in other regional hospitals handle this

kind of exceptions in the year of 2002. She there-

fore identifies Hospital and Time as the target

attributes, and define the predicates on Hospital

and Time as p(h) = ‘h is a regional hospital’ and

p(t) = ‘year(t) = 2002’, respectively. She then priori-

tizes the three candidate attributes in the order:

Participant, Days delayed, and Time. As a result,

only the three exception records marked by asterisks

in Table 2(b) will be retrieved. This is an example

of targeted-closeness matching.

Note that the concept hierarchy pertaining to each

attribute may vary over time. For example, if some

day the official period for hospitals’ correcting data is

extended to 10 days, the concept hierarchy for Days

delayed has to be changed accordingly. In summary,

to enable an effective similarity matching, the agent

4 We number levels from leaves upward. That is, the concept at

a leaf node is designated as level 0, and that at the parent of a leaf

node is assigned level 1, and so on.

Fig. 4. Concept hierarchies of (a) Time, (b) Participant, (c) Hospital, and (d) Days delayed.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 59

has to specify a matching criterion as the input of the

exception handler that includes:

1. the feature of the current exception,

2. (optional) a set of target attributes, each of which is

associated with a predicate,

3. a set of candidate feature attributes,

4. a set of concept hierarchies, each associated to a

candidate attribute, and

5. a set of importance values, each pertaining to a

candidate attribute.

5. Retrieving similar exceptions

This section discusses how to quantify the simi-

larity between exceptions. For the closeness matching,

we select the k exceptions that are the most similar,

where k is a constant specified by the user. For the TC

matching, for each stored record in EHDB we first

evaluate each predicate for the corresponding target

attribute value. If all the predicates evaluate to true,

we calculate the distance between that record and the

current exception record based on the candidate

attributes. These records are ranked in ascending order

of their distances and the first k records are selected.

Thus, for both kinds of matching, the main challenge

lies in the calculation of the distance between records

for a given set of (candidate) attributes.

The basic idea is to first compute the similarity of

each selected attribute of the exception feature by

considering the associated concept hierarchy. Each

attribute similarity is then weighted by its importance

when computing the entire exception similarity. Let m

be the number of candidate attributes provided by the

agent. Each exception record can be thought as a

vector in m-dimensional space. Let the feature of

current exception be c=(c1, c2,. . ., cm), and that of

the ith exception ei in the EHDB be ei=(ei,1, ei,2,. . .,
ei,m).

5.1. Distance between two attribute values

While the distance between numeric attribute

values can be easily determined by using a simple

function such as subtraction, that between categorical

attribute values is less obvious to specify. A common

approach for computing distance between values of a

categorical attribute is to construct a semantic ontol-

ogy pertaining to the attribute, and the distance

between two concepts is measured as the number

of edges on the shortest path that connects one

concept to the other in the ontology [5]. In our

model, a concept hierarchy, which can be considered

as a kind of ontology, is associated with each

candidate attribute, and the attribute values of excep-

tion records locate at the lowest level of the hier-

archy. Equivalently, we define the distance between

the jth attribute cj of the current exception and that

of the ith exception ei,j, denoted att_dist(cj, ei,j), as

the level number of the least common ancestor of cj
and ei,j in the concept hierarchy of the ith attribute.

Consider the two attributes Days delayed and Hos-

pital in Example 1. The current exception is charac-

terized as h7, CSHi. The distances between attributes

of the current exception and those in Table 1 are

partially listed as follows:

att_dist1(7, 7) = 0

att_dist1(7, 5) = 1

att_dist1(7, 11)
5 = 3

att_dist2(CSH, CSH) = 0

att_dist2(CSH, HDH) = 1

att_dist2(CSH, VMH) = 2

5.2. Distance between two exceptions

There are a number of ways to compute the distance

between two vectors. Here we use the Manhattan

distance because its computation involves simply the

summation of the distances of individual element pairs

that can be computed by using att_dist() defined

above [4]. Furthermore, the distance between two

attribute values is weighted by the importance

parameter provided by the agent. Specifically, the

distance between two exceptions c and ei, denoted

dist(c, ei), is given by

distðc; eiÞ ¼
Xm

j¼1

wjatt distðcj; ei;jÞ; ð1Þ

where wi is the importance weight assigned to the ith

attribute.

5 Here the common ancestor is All, whose level is defined as 3

because it takes three edges to reach 11 from All.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6960

5.3. Heterogeneous records

In the above discussion, we implicitly assume that

for each record stored in the EHDB, all the attributes

are present that are necessary to perform the matching

with the current exception record. In reality, however,

this is not always the case. Recall that an exception is

associated with two kinds of attributes, generic and

characteristic. While the set of generic attributes are

stable, the set of characteristic attributes may vary.

Exactly which characteristic attributes should be

attached to the current exception is at the discretion

of the agent who is responsible for handling that

exception. Thus, it is possible that some stored records

do not contain all the characteristic attributes selected

for the current exception record, or they may contain

more attributes than necessary. We call these records

heterogeneous records. The existence of heterogene-

ous records has two implications. For closeness

matching, a missing attribute renders it being impos-

sible to calculate the distance between the heteroge-

neous record and the current record. For TC matching,

if a target attribute is missing, then there is no way to

evaluate the predicate on that attribute. In the follow-

ing, we propose several approaches for handling

heterogeneous records. They differ mainly in ways

of filling out the missing attributes. Let r be a record

stored in the EHDB, and c be the current exception

record. Let a be a candidate or target attribute for c,

but is missing from r.

5.4. Optimistic method

If a is a target attribute, a value v for a is inserted

into r such that pa(v) = true
6. If a is a candidate

attribute, we insert ca. The philosophy here is that

the missing value is assumed to contribute to the

likelihood that the heterogeneous record will be

selected. Thus, the agent should use this method if

the missing attribute is not important. This is desirable

since the records that should have been retrieved had

they contained the missing values would still be

returned. Another situation where the optimistic

method can be used is when the agent would like to

examine many records to assist him/her in making a

decision, or if the number of non-heterogeneous

records expected to be returned does not provide a

satisfactory reference.

5.5. Pessimistic method

This is just the opposite of the above method. If a

is a target attribute, and there exists a value v such that

pa(v) = false, then insert v as the value for a into r,

otherwise, insert any value in the domain of a into r. If

a is a candidate attribute, insert value v such that the

youngest common ancestor of v and c.a is at level L,

where L is the number of levels in the concept

hierarchy for attribute a. We can see that filling out

a value in this way contributes to the likelihood that

the heterogeneous record will not be selected. If the

missing attribute is important, then the heterogeneous

records that should not be retrieved had they con-

tained the missing value would indeed not be

retrieved. This is desirable since the agent cannot

possibly make a wrong reference. However, those

records that should be retrieved may also get lost.

The agent must decide which aspect is more impor-

tant. For example, if the agent does not have an idea

of how to handle the current exception (i.e. correct

reference is important), he/she should use a pessimis-

tic method, otherwise this may not be a good choice.

5.6. Statistical method

This method makes an educated guess of what the

missing value would be. A simple way of doing this is

to use a random number generator, Ra with a prese-

lected distribution. When it is called, it returns a value

from the domain of attribute a. The agent can deter-

mine the desired distribution. For example, we may

simply use a uniform distribution, which returns any

value in the domain of a equally likely. A more

sophisticated method would be an algorithm that

performs a supervised learning based on the values

of some attributes in the stored records in EHDB.

(There is a large number of works on supervised

learning in the current literature. They can be selec-

tively employed for our purpose.) A statistical method

is less aggressive than an optimistic method, and

therefore can retrieve less records with low reference

values. It is also not as conservative as a pessimistic

6 Recall that we assume the predicate is true for at least one

value in the domain of the attribute on which it is defined..

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 61

method, and hence may obtain more records for

references. It is appropriate for an agent who is able

to handle the exception at hand with a certain degree

of confidence.

6. Searching for similar exceptions

Similarity matching has been studied extensively in

the past, and many methods have been proposed.

Conceptually, however, they all employ similar strat-

egies, i.e. evaluating the distance between the objects,

and find the closest objects. The main differences lie in

the metrics used to define the distances, and the data

structures used to implement the algorithms. The

problem in our context is similar to a class of similarity

matching problems, termed k-nearest neighbor query

(k-NN). In the current literature, the best-known data

structure used for k-NN is R-tree [25]. An R-tree in

some sense is similar to a B-tree, but the ‘indexing’

scheme is very different. The basic idea is that all the

points are organized into groups, and each group is

bounded by a geometric object (such as a rectangle).

At each node, the distances between the query point

and the bounding objects that belong to the node are

calculated efficiently. These distances can then be used

to guide the search, based on the knowledge that all the

bounded points have a larger distance than the bound-

ing object from the query point. Recently, some

variation of R-tree, such as grid method [18] and

SR-tree [17], are suggested for applications with

different parameters. Using these data structures, the

complexity of k-nearest neighbor query can be either

logarithmic to the total number of objects stored or

linear to the number of objects retrieved.

The techniques used in the R-tree (or its variations)

are not applicable in our context, however. This is

because, from the way we define the distance, the

exception records do not preserve the basic Euclidian

properties such as the sum of two sides is larger than

the third side in any triangle. (The Euclidian proper-

ties are implicitly assumed in R-tree.) In this section,

we present three methods, in the order of increasing

sophistication, that are suited to our context. Since

handling heterogeneous records can be viewed as

orthogonal to k-NN, in the following we will assume

that all the exception records have the same set of

attributes.

6.1. SEQ-E

The most straightforward approach for identifying

the k exception records that are closest to the current

exception record is to sequentially traverse all of the

exception records in the EHDB and compute their

distances to the current exception according to Eq. (1).

The k most-similar exceptions can then be identified

at the end of the traversal. This approach is abbre-

viated as SEQ-E, standing for SEQuential matching

algorithm on Exception records. Let N be the number

of exception records in the EHDB and B the number

of exception records contained in a disk block. The

number of blocks accessed is O(N/B), assuming that k

is a constant.

6.2. SEQ-C

Rather than scanning every exception record in the

EHDB, another approach is to enumerate all possible

concept-level permutations in ascending order of their

weights. A concept-level permutation is a m-tuple hl1,
l2,. . ., lmi, where 1V liV Li and Li is the number of

levels in the concept hierarchy of attribute i. The

weight of hl1, l2,. . ., lmi is
Pm

i¼1wili . We say that

hl1, l2,. . ., lmi is matchable if there exists an exception

record ei=(ei,1, ei,2,. . ., ei,m) in the EHDB such that ei,j
and cj meet at level lj of the concept hierarchy of

attribute j, 1V jVm. The traversal starts with the

concept-level permutation of the lowest weight. If

there are k1 exception records that are targets with

this permutation, where k1 < k, we next inspect the

concept-level permutation of the next weight to search

for k� k1 most-similar exception records. This proce-

dure continues until the k exception records have all

been identified. For example, suppose there are four

candidate attributes (i.e. m = 4) and that the same

weight is assigned to each. The traversal sequence

on concept-level permutations is h0, 0, 0, 0i, h0, 0, 0,
1i, h0, 0, 1, 0i, h0, 1, 0, 0i, h1, 0, 0, 0i, h0, 0, 0, 2i,. . .,
hL1�1, L2� 1, L3� 1, L4� 1i. We call this approach

SEQ-C, standing for SEQuential matching algorithm

on Concept-level permutations.

Since it is more convenient to store past exception

records in a database, it would be nice if a simple SQL

statement can be used to determine whether a permu-

tation is matchable for the current exception. To do so,

we number categorical attribute values based on their

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6962

positions in the corresponding concept hierarchies.

Consider, for example, the concept hierarchy in Fig.

5a. We can translate the domain values into the scalar

values, as shown in Fig. 5b.

Suppose that there are three candidate attributes

(A1, A2, and A3), each of which is associated with

a concept hierarchy having the same structure as

that shown in Fig. 5a. The attribute values of the

current exception are a9, a2, and a4, respectively,

and we would like to determine if the permutation

h1, 0, 2i is matchable. The following query serves

this purpose:

SELECT*

FROM EHDB

WHERE A1 BETWEEN 6 AND 9

AND A2= 2

AND A3 BETWEEN 1 AND 9;

A non-empty set for the query result indicates that

the permutation is matchable.

An index on the encoded attribute values can be

created to improve the query processing time. In the

above example, the query can be processed more

efficiently if an index such as the following is

constructed:

CREATE INDEX

ON EHDB(A1, A2, A3)

However, the popular B+-tree-based index structure

that is widely implemented in today’s commercial

DBMSs may not be efficient when processing multi-

attribute range queries [28] with a huge data volume. A

number of index structures that are designed to support

efficient range-query processing on large amounts of

high-dimensional data have been proposed in the

literature (e.g. see Refs. [2,3,17,20,30]). Another way

of speeding up the processing of multi-attribute range

queries is to employ parallelism by declustering the

data set according to the attribute values of the queries.

The readers are referred to Ref. [9] for a good survey

on various data placement schemes. Comparison of the

various approaches for efficiently answering range

queries is beyond the scope of this paper.

In case of targeted-closeness matching, the set of

records that are associated with a matchable permu-

tation has to be further examined to obtain a subset

that comprises the target records.

For now, let us assume that some tree-based index

structure is employed and x is the number of levels in

the index structure. The number of blocks accessed by

SEQ-C is O(Pi = 1 to kLix).

6.3. BIN-C

To help reduce the search time relative to the above

two approaches, we propose another algorithm that

performs a binary search on the sequence of concept-

level permutations. We call this approach BIN-C,

standing for BINary searching algorithm on Concept-

level records. Let C be the total number of concept-

level permutations, i.e. C = L1� L2� . . .� Lk, and let

P[i] denote the ith permutation in the sequence sorted

in ascending order of weights, 1V iVC. BIN-C first

checks if P[C/2] is matchable. If so, the permutations

after P[C/2] in the sequence are tentatively ignored,

and the next permutation checked is P[C/4]; otherwise

P[3C/4] is checked. This procedure continues until a

matchable permutation P[j] is found such that all the

subsequent permutations P[j/2], P[3j/4],. . ., P[qj(2log j
Fig. 5. (a) Original concept hierarchy, (b) Concept hierarchy after

encoding.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 63

� 1)/2log ja] are not matchable. If P[j] is matchable with

k1 (target) records, the same procedure is conducted

when searching for the next k� k1 similar records on

the permutations between P[j+ 1] and P[n]. In sum-

mary, BIN-C first locates a minimum matchable per-

mutation and then tries the next matchable per-

mutation, and so on.

Readers may have already noticed that the excep-

tion records returned by BIN-C may not be optimal.

This is because BIN-C returns a permutation P[j] only

if P[j] is matchable and all the following permutations

P[j(2i� 1)/2i], 1V iV log j, are not matchable. How-

ever, this does not prevent the existence of some

matchable permutation P[i], where i < j. We have

conducted some experiments to compare the quality

as well as the efficiency of these algorithms, and

report the results in Section 7.

Similar to the case of SEQ-C, we assume that some

tree-based index structure is employed and that x is the

number of levels in the index structure. In the worst

case, when every permutation has to be visited, the

number of blocks accessed by BIN-C is also O(Pi = 1 to

kLix). In the best case, when only a logarithm of the

total number of permutations need to be visited, the

number of blocks accessed by BIN-C is O(log(Pi = 1 to

kLi)x). Table 3 summarizes the running times of the

three algorithms under various conditions.

7. Performance evaluation

We are still left with the problem of assessing how

the three algorithms perform in handling real-world

data. Unfortunately, the workflow exception records of

the insurance claim process in NHIB that we consulted

to were not available to this work due to confidential

reasons. Therefore, we generated synthetic data and

applied the data to the proposed algorithms. Note that

we compare the three algorithms only for closeness

matching since they differ mainly in the ways they

retrieve the most k similar exception records. These

results are intended to reveal the relative performance

of the three algorithms under various operation regions.

7.1. Parameter settings

Suppose there are N exception records stored in the

EHDB, each of which is described by m attributes. To

simplify the performance study, we assume that the

concept hierarchy of every attribute is homogeneous

in its structure. That is, each concept hierarchy is

modelled as having L levels, and the degree of each

non-leaf node is D. For the weighting scheme, we

have tested several combinations. In this paper we

show two representative ones, namely, equal weight-

ing and prioritized weighting. The equal weighting

scheme assigns the same weight to each attribute, and

the prioritized weighting scheme prioritizes the attrib-

utes into a particular order. In our study, the weight

tuple of the equal weighting scheme is h1,1,. . ., 1i.
Let the priority sequence imposed by the prioritized

weighting scheme be w1, w2,. . ., wB, where wi has

higher priority than wj, 1V i < jVB. The weight tuple

hw1, w2,. . ., wBi of the prioritized weighting scheme is

such that wB = 1, and wi =wi + 1L, 1V i < B. This

assignment guarantees that the permutation h0, 1, 0,
0i has larger weight than h0, 0, L� 1, L� 1i. The
exception records in the EHDB and in the current

exception are randomly generated. These parameters

and their values are summarized in Table 4.

In the following, we compare the relative perform-

ance of the three algorithms under various parameter

settings. These experiments were conducted on a PC

Table 3

Running times of SEQ-E, SEQ-C, and BIN-C (N is the number of

exceptions in the EHDB, B is the number of exception records

contained in a disk block, x is the number of index levels)

SEQ-E SEQ-C BIN-C

Best case O(N/B) O(x) O(log(Pi = 1 to kLi)x)

Worst case O(N/B) O(Pi = 1 to kLi x) O(Pi = 1 to kLi x)

Average case O(N/B) O(Pi = 1 to kLi x) not clear

Table 4

Parameter values

Parameter Description Value(s)

N Number of exception

records in the EHDB

10,000. . .1,500,000

m Number of candidate

attributes

4

L Number of levels in a

concept hierarchy

6

D Degree of each internal

node in a concept hierarchy

5

k Desired number of returned

exception records

1, 10, 100

W Weighting scheme Equal, Prioritized

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6964

comprising a 300-MHz Pentium processor coupled to

256 MB of RAM.

We generated a number of synthetic data sets and

stored them in MS SQL Server 6.5. The three algo-

rithms were implemented using Borland’s Delphi

Pascal. A B+-tree index on the conjunction of all

attributes was created to improve the running time of

both SEQ-C and BIN-C.

7.2. Impact on efficiency

Fig. 6a and b shows the running times of the three

algorithms under the equal and prioritized weighting

schemes, respectively. As expected, the running time

of SEQ-E is approximately linearly proportional to the

number of exception records in the EHDB. To stretch

these algorithms to their limit, the number of excep-

tion records was set up to 1,500,000. It can be seen

that the increase of the running time with the increase

on the number of exception records is quite mild

initially. However, when the number of exception

records reaches more than 1,000,000, the running

times of both SEQ-C and BIN-C incur a big jump.

After the jump, the increase of running time remains

mild again. This is because the height of the index

structure (such as the B+-tree) is a step-like function

Fig. 6. (a) Running time for the equal weighting scheme, (b) Running time for prioritized weighting scheme.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 65

on the number of records. In our experiment, when the

number of exception records is approximately

1,000,000, the number of index levels increases by

1, which dramatically increases the running time. This

explanation is consistent with the following index-

level information provided by SQL Server 6.5, which

shows that when the number of records is between

1,000,000 and 1,100,000, the index level is incre-

mented (in the average case).

B+-tree levels

Fig. 6 also shows that BIN-C always performs

better than SEQ-C. Although the difference may not

seem significant in the diagram, a small difference in

the diagram may result in a large time difference in the

real world due to the longer execution time in the

experiments (i.e. minutes). Moreover, SEQ-C per-

forms much better than SEQ-E. We attribute the

superior performance to the index structure employed

by SEQ-C, which is much more efficient than the

sequential scan performed in SEQ-E.

Fig. 7. (a) Weight of the matching exception records for the equal weighting scheme, (b) The first attribute value of the matching exception

records for the prioritized weighting scheme.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6966

7.3. Impact on quality of the returned records

The exception records returned by SEQ-E or

SEQ-C have the minimum weights, while those

returned by BIN-C may be less than optimal. To

see how the exception records returned by BIN-C

differ from those returned by the other two in terms

of weight, we conducted an experiment for k = 1

(Fig. 7a). As expected, SEQ-E (or SEQ-C) always

returns the exception record with the smallest

weight, whose weight decreases as the number of

records in the EHDB increases. This is because we

fix the structure of the concept hierarchy, and thus as

the number of exceptions records increases, there is a

greater chance of finding a matching exception

record with a smaller weight. Moreover, we can

clearly see in Fig. 7a that the weight difference

between the exception records returned by the two

algorithms is very small, and in several instances, the

results of BIN-C are as good as those of SEQ-E (or

SEQ-C).

As the prioritized weighting scheme gives the first

attribute the highest value, we conducted another

experiment to determine—for each algorithm—the

value of the first attribute of the returned exception

records. The result is shown in Fig. 7b, which

indicates that the performance of BIN-C and SEQ-

E (or SEQ-C) is very similar in terms of the quality

of the first attribute values under various operating

regions.

Overall, we conclude that BIN-C is a promising

approach for searching similar exception records. It

offers higher efficiency at the cost of a minor

decrease in the quality of the result. Since the

result returned by the exception handler serves only

as supporting information to the agent in deciding

the proper approach to handling the current excep-

tion, this small deviation from the optimal result

should be acceptable in most cases.

8. Conclusions

Handling the unexpected exceptions from work-

flows is a practical but difficult problem. In this

paper, we have proposed an architecture model for

handling such workflow exceptions. When an ex-

ception occurs, the exception handler first searches

for a suitable ECA rule that can be triggered. If no

such rule can be found, it then searches the previous

exception cases and identifies a small subset that

resembles the current exception. We characterized an

exception by a set of attributes and allowed users to

specify a criterion for retrieving matching records.

This criterion includes a set of predicates on some

attributes and a set of importance weights on can-

didate attributes. Exception records that satisfy these

predicates are ranked according to a similarity

measure defined by considering candidate attribute

values and their importance weights. Three algo-

rithms, namely, SEQ-E, SEQ-C, and BIN-C, have

been derived for finding past exceptions that are

similar to the current one. Their relative perform-

ance has been compared both theoretically and by

experimenting with synthetic data sets. We con-

cluded that BIN-C is an attractive approach, espe-

cially when the number of past exception records is

huge. BIN-C provides considerable benefits in terms

of the execution time, and sacrifices very little in

terms of the quality of the returned exception

record(s).

As we described earlier in this paper, unexpected

exceptions can be handled through a two-step pro-

cedure in the real world. Firstly, the approaches

proposed in this paper are employed in order to

obtain a set of similar past exceptions. Secondly,

these exceptions are reviewed and an appropriate

approach is decided upon for handling the new

exception. The focus of this paper has been on the

first step. However, the second step is at least as

important as the first one, since it usually involves a

great deal of human input. Our future work includes

the development of a structured way for performing

this step. The preliminary idea is to first derive a

naı̈ve exception handler from these similar excep-

tions and then adopt case-based reasoning to adapt

this naı̈ve handler to handle the current exception.

Acknowledgements

This work is supported in part by the National

Science Council in Taiwan under Grant no. NSC90-

2213-E-110-022.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 67

References

[1] G. Alonso, M. Kamath, D. Agrawal, A. E1 Abbadi, R. Gun-

thor, C. Mohan, Failure Handling in Large Scale Workflow

Management Systems, IBM Tech. Report RJ9913, 1994.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seiger, The

R*-tree: an efficient and robust access method for points and

rectangles, Proc. of ACM SIGMOD Conf. on Management

of Data, ACM Press, Atlantic City, NJ, 1990.

[3] S. Berchtold, D. Keim, H.-P. Kriegel, The X-tree: an index

structure for high-dimensional data, Proc. of the 22nd Conf.

on VLDB, Morgan Kaufmann, Mumbai (Bombay), India,

1996.

[4] M.J. Berry, G. Linoff, Data Mining Techniques: For Market-

ing, Sales, and Customer Support, Wiley, Indianapolis, 1997.

[5] K. Bradley, R. Rafter, B. Smyth, Case-based user profiling for

content personalization, Proc. of the AAAI-98 Workshop on

Recommender Systems, Springer, Trento, Italy, 1998.

[6] F. Casati, S. Ceri, S. Paraboschi, G. Pozzi, Specification

and implementation of exceptions in workflow management

systems, ACM Trans. Database Syst. 24 (3) (1999, Sep.)

405–451.

[7] D.K.W. Chiu, Q. Li, K. Karlapalem, A meta modeling ap-

proach to workflow management systems supporting excep-

tion handling, Inf. Syst. 24 (2) (1999, April) 159–184.

[8] D.K.W. Chiu, Q. Li, K. Karlapalem, Web interface-driven

cooperative exception handling in adome workflow manage-

ment system, Inf. Syst. 26 (2) (2001, April) 93–120.

[9] Special issue Data Placement for Parallelism, Bull. Tech.

Comm. Data Eng. 17 (3) (1994, Sep.).

[10] T. Davenport, Process Innovation—Reengineering Work

through Information Technology, Harvard Business School,

Boston, MA, 1993.

[11] J. Eder, W. Liebhart, Contributions to exception handling in

workflow systems, Proc. of EDBT Workshop on Workflow

Management Systems, Valencia, Spain, Springer, Valencia,

Spain, 1998.

[12] A.K. Elmagarmid, Database Transaction Models for Ad-

vanced Applications, Morgan Kaufmann Publishers, Califor-

nia, 1992.

[13] D. Georgakopoulos, M. Hornick, A. Sheth, An overview of

workflow management: from process modeling to workflow

automation infrastructure, Distrib. Parallel Databases 3 (3)

(1995) 119–153.

[14] C. Hagen, G. Alonso, Exception handling in workflow man-

agement systems, IEEE Trans. Softw. Eng. 26 (10) (2000,

Oct.).

[15] J. Han, Y. Cai, N. Cercone, Knowledge discovery in data-

bases: an attribute-oriented approach, Proc. of the 18th VLDB

Conf., Vancouver, British Columbia, Canada, Morgan Kauf-

mann, Vancouver, Canada, 1992, pp. 547–559.

[16] J. Han, Y. Cai, N. Cercone, Data-driven discovery of quanti-

tative rules in relational databases, IEEE Trans. Knowl. Data

Eng. 5 (1993, Feb.).

[17] N. Katayama, S. Satoh, The SR-tree: an index structure

for high-dimensional nearest neighbor queries, Proc. of

ACM SIGMOD Conf., ACM Press, Tuczon, AZ, 1997,

pp. 369–380.

[18] E. Knorr, R. Ng, Finding intensinal knowledge of distance-

based outliers, Proc. of 25th VLDB Conf., Morgan Kaufmann,

Edinburgh, Scotland, 1999, pp. 211–222.

[19] A. Koenig, B. Stroustrup, Exception handling in C++, (revi-

sed) Proc. of USENIX C++ Conf., San Francisco, (1990)

149–176.

[20] K. Lin, H.V. Jagadish, C. Faloutsos, The TV-tree: an index

structure for high-dimensional data, VLDB J. 3 (4) (1994,

Oct.) 517–542.

[21] J.A. Miller, D. Palaniswami, A.P. Sheth, K.J. Kochut, H.

Singh, WebWork: METEOR2’s web-based workflow manage-

ment system, J. Intell. Inf. Syst. 10 (2) (1998, March/April)

185–215.

[22] N.W. Paton, O. Diaz, Active database systems, ACM Comput.

Surv. 31 (1) (1999, March).

[23] M. Reichert, P. Dadam, ADEPT-supporting dynamic changes

of workflows without losing control, J. Intell. Inf. Syst. 10 (2)

(1998, March/April).

[23] M. Reichert, P. Dadam, ADEPT-supporting dynamic changes

of workflows without losing control, J. Intell. Inf. Syst. 10 (2).

[24] M. Reichert, C. Hensinger, P. Dadam, Supporting adaptive

workflows in advanced application environments, EDBT

workshop on Workflow Management System, Valencia,

Spain, Springer, Valencia, Spain, 1998.

[25] N. Roussopoulos, S. Kelley, F. Vincent, Nearest neighbor

queries, Proc. of ACM SIGMOD Conf. on Management of

Data, ACM Press, San Jose, CA, 2000, pp. 427–438.

[26] R. Srikant, R. Agrawal, Mining quantitative association rules

in large tables, Proc. of the ACM SIGMOD Conf. on

Management of Data, ACM Press, Montreal, Canada,

1996, pp. 1–12.

[27] A. Sheth, K.J. Kochut, Workflow applications to research

agenda: scalable and dynamic work coordination and collab-

oration systems, Proc. of NATO Advanced Study Institute on

Workflow Management Systems and Interoperability, Istan-

bul, Turkey, Springer, Istanbul, Turkey, 1997, pp. 35–59.

[28] A. Silberschatz, H. Korth, S. Sudarshan, Database System

Concepts, McGraw-Hill, New York, 1997.

[29] J. Tang, S.-Y. Hwang, A scheme to specify and implement ad-

hoc recovery in workflow, Proc. of 6th Int’l. Conf. on Extend-

ing Database Technologies, Springer LNCS, Valencia, Spain,

1998, p. 1377.

[30] D.A. White, J. Jain, Similarity indexing with the SS-tree, Proc.

of 12th Int. Conf. onData Engineering, NewOrleans, LA, IEEE

Computer Society, New Orleans, LA, 1996, pp. 516–523.

[31] Workflow Management Coalition, The Workflow Reference

Model, Workflow Management Coalition, Belgium, 1994.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6968

San-Yih Hwang received his BS and MS

degrees from National Taiwan University,

Taiwan, in 1984 and 1988, respectively,

and his PhD degree from the University of

Minnesota, Minneapolis, in 1994, all in

computer science.

He is presently an associate professor in the

Department of Information Management,

National Sun Yat-Sen University, where

he initially joined in 1995. Between 1994

and 1995, he was with the Computer and Communication Labo-

ratory, Industrial Technology Research Institute (CCL/ITRI), Tai-

wan. His current research interests include workflow systems, data

mining, and data management aspects in mobile computing.

Jian Tang received his MS degree from the

University of Iowa in 1982, and his PhD

from the Pennsylvania State University in

1988, both from the Department of Com-

puter Science. Since 1988, he has been a

faculty member at the Department of Com-

puter Science, Memorial University of

Newfoundland, Canada, where he is cur-

rently a professor. He is currently working

in the Department of Computer Science

and Engineering, the Chinese University of Hong Kong, as a

visiting scholar. His research interests include database systems,

workflow management, data mining, e-commerce transactions.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–69 69

	Consulting past exceptions to facilitate workflow exception handling
	Introduction
	Related work
	Contributions

	A motivating example
	The architecture model
	Characterizing unexpected exceptions and their queries
	Closeness matching
	Targeted-closeness matching (TC)
	Example

	Retrieving similar exceptions
	Distance between two attribute values
	Distance between two exceptions
	Heterogeneous records
	Optimistic method
	Pessimistic method
	Statistical method

	Searching for similar exceptions
	SEQ-E
	SEQ-C
	BIN-C

	Performance evaluation
	Parameter settings
	Impact on efficiency
	Impact on quality of the returned records

	Conclusions
	Acknowledgements
	References

