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1. Introduction 

As organizations become more process conscious, management of processes and process data 

with temporal context is gaining increased attention. For example, business process 

reengineering, referring to the fundamental analysis and radical redesign of business processes 

to achieve dramatic improvements in such critical measures of performance as cost, quality, 

service and speed (Hammer and Champy, 1993), represents an important endeavor toward 

business revolution in the last decade. On the other hand, workflow management aims at 

improving process efficiency and customer satisfaction by automating and actively monitoring 

process execution. To achieve these goals, the description of constituent activities, the 

control/data flow, the potential participants of various activities, the organizational model and 

reference data pertaining to a business process have to be specified precisely (WMC, 1994). 

 

Business process reengineering and workflow management are directed toward systematic 

analysis and management of organizational processes. Not surprisingly, even where processes 

have been managed and monitored by organizations, exceptional executions often occur. The 

importance of handling exceptions in the context of workflow management has been 

recognized in the recent development of several research prototypes (e.g., EXOTICA (Alonso 

et al., 1994), METEOR (Sheth and Kochut, 1997), ADOME (Chiu et al., 1999; Chiu et al., 

2001), ADEPT (Reichert and Dadam, 1998), WAMO (Eder and Liebhart, 1998), and WIDE 

(Casati et al., 1999)). On the other hand, since the difficulty of defining a process model that 

represents all properties of an underlying business process has been acknowledged (Davenport 

1993), ad hoc processes frequently have been observed (Krishnakumar and Sheth, 1995; Tang 

and Hwang, 1996). Process executions or instances, ad hoc or exceptional, are valuable to an 

organization, since they not only record execution tracks but, more importantly, also embed 

execution practices and heuristics. With the widespread diffusion of information systems in 

organizations, large volumes of process data are continuously generated and collected, creating 
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an urgent need for new analysis techniques that can intelligently and automatically extract 

implicit and potentially useful knowledge to support business decision making. 

 

Most of the previous work in process mining (or called workflow mining or process discovery) 

assumes the existence of an underlying process model that generates process instances. Thus, 

given a set of process instances, the goal of process mining is to discover a process model that 

best describes them. In contrast to the previous work, this work does not assume the existence 

of such an underlying process model. Under such an assumption, it may not be practical to 

discover a single process model from a set of process instances. Given a set of process 

instances, we aim to discover knowledge of frequently occurring activities and respective 

temporal relationships that exist within these process instances. Since the discovered 

knowledge involves activities with temporal relationships, they are referred to as temporal 

patterns in this study. The discovery of temporal patterns can be applied to various application 

domains for supporting crucial business decisions. For example, to provide better patient care 

and high quality health services, implementation of clinical pathways are desirable for health 

care providers (Quigley et al., 1998). Evidently, design of a clinical pathway for a particular 

diagnosis, procedure or symptom is a time-consuming and knowledge-intensive process. Thus, 

use of clinical care logs for supporting design of clinical pathways represents a promising 

approach (Lin et al., 2001). However, since clinical cares for patients with the same diagnosis, 

procedure or symptom may vary with physicians’ practice preferences and styles, attempting to 

discover from clinical care logs a universal clinical pathway for a particular diagnosis, 

procedure or symptom may not be practical. Instead, it would be essential to discover from 

clinical care logs the frequent (partial) clinical paths that become valuable inputs when design  

a clinical pathway or a set of clinical pathways for a particular diagnosis, procedure or 

symptom. In the context of project management, it is desirable to discover how plan patterns 

that frequently result in desired plan executions differ from those that are frequently associated 
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to undesired executions. In the following, a real world application that applied our proposed 

algorithms is depicted for illustration purpose. 

 

Example 

Health care has become a major focus of concern and even a political, social, and economic 

issue in modern society. People rely on government-sponsored and -managed health insurance 

systems (such as in Australia, France, and Taiwan), private health insurance systems, or both to 

share the expensive health care costs. With such an intensive need for health insurances, health 

care fraud and abuse become a serious problem. Of the various parties involved in the health 

care fraud and abuse, medical institutes seem to be responsible for most of the damages. 

Conceivably,  an insurance claim is likely to be fraudulent if its constituent activities order 

suspiciously. In this case, it is sensible to discover temporal patterns from normal and 

fraudulent practices (as provided by experts) and subsequently identify those patterns that are 

capable of distinguishing fraudulent practices from normal ones.  

 

We gathered 2543 insurance claim instances about Pelvic Inflammatory Disease from regional 

hospitals in Taiwan during July 2001 and June 2002. After removing instances that contain 

missing or noisy data, we were left with 2011 cases, among which 906 instances were 

identified by two physicians as fraudulent. We applied the temporal pattern mining algorithms 

proposed in this study to identify a set of frequent temporal patterns. We then applied a 

classification analysis technique (specifically, C4.5) for fraud/abuse detection by using the 

discovered temporal patterns as predictive features. The resultant detection model was able to 

achieve a detection accuracy of around 65%. � 

 

Numerous data mining techniques have been proposed to extract implicit and potential useful 

knowledge from large databases. Based on the types of knowledge to be discovered, data 
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mining techniques can be broadly classified into several categories, including classification 

(Breiman et al., 1984; Quinlan, 1986; Rumelhart et al., 1986; Quinlan, 1993), clustering 

(Anderberg, 1973; Kohonen, 1989; Kaufman and Rousseeuw, 1990; Ng and Han, 1994; 

Kohonen, 1995), association rule (Agrawal et al., 1993; Agrawal and Srikant, 1994; Srikant 

and Agrawal, 1997; Aggarwal and Yu, 2001), sequential pattern (Agrawal and Srikant, 1995; 

Lesh et al., 2000; Srikant and Agrawal, 1996), data visualization (Keim and Kriegel, 1996), etc. 

A review of existing data mining techniques suggests that little attention has been paid to the 

discovery of temporal patterns. Thus, the current research was motivated by recognition of the 

importance of mining temporal patterns from process data. Specifically, we formalized the 

temporal pattern discovery problem and designed three algorithms that are based on the notions 

of temporal graphs, temporal relationship sets, and quasi-sequences, respectively. 

Subsequently, the performance and scalability of these algorithms were empirically evaluated 

over a range of data characteristics using synthetic data sets. 

 

The remainder of the paper is organized as follows. Section 2 reviews prior research work 

related to this study. Section 3 formally defines concepts related to temporal pattern discovery. 

The three temporal pattern discovery algorithms proposed are detailed in Section 4. Section 5 

describes a model for generating synthetic data sets for performance evaluation and reports 

evaluation results of applying the proposed algorithms over a range of data characteristics. The 

paper is concluded in Section 6 with a summary and some future research directions. 

 

2. Related Work 

The work reported in (Agrawal et al., 1998; Datta, 1998; Aalst et al., 2002; Hwang and Yang, 

2002) deals with the problem of discovering a process model from a set of process instances 

and assumes the existence of a process model (i.e., control dependencies between activities) 

underlying the given set of process instances. In this vein, such discovery, using a directed 
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graph (Agrawal et al., 1998; Hwang and Yang, 2002) , a finite state machine (Datta, 1998), or a 

Petri-net (Aalst et al., 2002) for representing process instances, aims at discovering a process 

model that best describes the set of process instances. This discovery problem has its origin in 

identifying software development processes and has found its way into business process 

construction (Datta, 1998). Our study significantly differs from the process model discovery in 

that we do not assume the existence of an underlying process model. That is, our study is 

designed to identify frequently observed temporal dependencies within process instances 

rather than control dependencies that are presumably genuine in the process instances. 

 

Our work is closest to sequential pattern discovery that discovers frequent sequential 

occurrence of activities (e.g., items purchased or events) across transactions of the same entity 

(e.g., customer or a user-specified time window). The sequential pattern discovery reported in 

(Agrawal and Srikant, 1995; Srikant and Agrawal, 1996) finds the maximal sequences among 

all sequences that have a certain user-specified minimum support. Each such maximal 

sequence is referred to as a sequential pattern. Mannila et al. (1995) reported a technique for 

finding frequent episodes from a given event sequence, where an episode is defined as a partial 

order on a set of events. The given event sequence is first partitioned into a set of windows, 

each of which is an event subsequence with time width equal to a user-specified interval. An 

episode e is said to occur in a window w if all (partial) orders attained in e are present in w. The 

goal of the episode discovery is to find the set of episodes that occur in a sufficient number of 

windows. The concept of episodes was further generalized by taking into account attributes 

associated with events (Mannila and Toivonen, 1996). The sequential pattern discovery 

problem assumes that a transaction contains a set of activities occurring at the same time and 

that transactions of the same entity are sequentially ordered, while the episode discovery 

problem takes as input a sequence of events occurring at different times. In contrast, we assume 

that an activity appears over a temporally extended interval, two activities may temporally 
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overlap or occur in sequence. Both sequential pattern discovery and episode discovery address 

only one type of temporal relationships (i.e., the sequential order), while our work seeks to 

identify patterns that are composed by both sequential and overlapping temporal relationships. 

 

In addition, a structure discovery system called Subdue was proposed in (Cook and Holder, 

2000; Gonzalez et al., 2000). Subdue is used to identify interesting and repetitive substructures 

within structural data that can be aggregately represented as a graph. The substructure 

discovery technique enumerates all possible subgraphs of the given graph and for each 

subgraph, uses a graph match algorithm to identify all its occurrences. Priority is given to the 

substructure that has smaller Minimum Description Length (MDL) (Rissanen, 1983). A MDL 

of a subgraph is proportional to the summation of the length of the subgraph and the length of 

the given graph compressed by the subgraph. In other words, an ideal subgraph is the one that 

is not very large but is powerful in compressing the graph. Iteration of the substructure 

discovery and replacement process constructs a hierarchical description of the structural data in 

terms of the discovered substructures. Such a hierarchy provides varying levels of abstraction 

for subsequent data analysis. By its nature, this technique identifies repetitive subgraphs from a 

large graph, rather than a large set of graphs as assumed by our work. Besides, it discovers only 

substructures that are regionally connected subgraphs and disregards transitive relationships 

among objects, limiting its applicability to our temporal pattern discovery problem, where 

transitivity in temporally sequential relationships prevails.  

 

Finally, Bettini et al. (1998) deals with the discovery of frequent-event patterns in a time 

sequence that consists of a set of time-stamped events. The discovery process starts with a 

user-specified event structure that consists of a set of variables representing events and 

temporal constraints between variables. Its goal is to identify instantiations of variables in the 

event structure that appear frequently in the time sequence. The event pattern discovery differs 
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from our work in several ways. First, it assumes an event appears at a time point rather than 

over a time interval. Second, it searches for instantiations of a user-specified event structure 

within a time sequence rather than discovering all possible frequent temporal relationships 

among events from a set of process instances. 

 

3. Formalization of Temporal Pattern Discovery Problem 

A process consists of a set of activities, each of which is an execution unit that leads to the 

transition of state in the process. The execution of an activity spans a temporally extended 

period. Each activity may also be associated with such information as execution entity(s) 

involved, execution location and execution outcome. However, since the main intent of this 

research is to discover frequent activities and their associated temporal dependencies, we 

exploit only the starting time and ending time of an activity execution. Our view on a process 

instance can be formally described as below. 

 

Definition 1. A process instance P is a set of triplets (vi, st(vi), et(vi)), where vi uniquely 

identifies an activity, and st(vi) and et(vi) are timestamps representing the starting time and 

ending time of the execution of vi in P, respectively. 

 

Given a process instance, the temporal relationship between any activity pair can be classified 

into two types: followed and overlapped. 

Definition 2. In a process instance P, an activity vi is followed by another activity vj if st(vj) ≥ 

et(vi). 

Definition 3. In a process instance P, two activities, vi and vj, are overlapped if st(vj) ≤ st(vi) < 

et(vj) or st(vi) ≤ st(vj) < et(vi). 

Definition 4. An activity vi is directly followed by another activity vj in a process instance P if vi 

is followed by vj and there does not exist a distinct activity vk in P such that vi is followed by vk 
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and vk is followed by vj. 

 

To represent temporal relationships between activities in a process instance concisely, a 

temporal graph is defined as follows. 

Definition 5. The pertinent temporal graph of a process instance P is a directed acyclic graph 

G = (V, E), where V is the set of activities in P, and E is a set of edges. Each edge in G is an 

ordered pair (vi, vj), where vi, vj ∈ V, vi ≠ vj, and vi is directly followed by vj. 

 

Transforming a process instance into its corresponding temporal graph representation is 

straightforward. We first traverse the activities in the given process instance by the ascending 

order of their starting times. For each activity v, the set F of activities that directly follow v are 

identified. Subsequently, edges connecting v to each activity in F are created. As shown in 

Figure 1(a), activity B will be processed first due to its earliest starting time among all activities 

in the process. Activities C and D directly follow B; thus, two edges are created from B to C and 

D, respectively, as shown in Figure 1(b). The subsequent traversal of this process instance 

processes activities A, C, D, and E in sequence. The resulting temporal graph corresponding to 

this process is graphically illustrated in Figure 1(b). From a given temporal graph G, it is 

evident that an activity vi is followed by another activity vj if and only if there exists a path from 

vi to vj in G, and vi and vj are overlapped otherwise. As shown in Figure 1(b), activity B is 

followed by E since there exists a path from B to E. In contrast, activities A and B are 

overlapped since there does not exist a path between them. 

 

A temporal pattern can also be represented as a temporal graph that has a certain user-specified 

minimum support and satisfies the maximality property. 

Definition 6. A temporal graph G is said to be supported by a process instance P if all followed 

and overlapped relationships that exist in G are present in P. 
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Definition 7. Given a set of process instances, a temporal graph G is said to be frequent if it is 

supported by no less than s% of the process instances, where s% is a user-defined minimum 

support threshold. 

Definition 8. A temporal graph G=(V, E) is a temporal subgraph of another temporal graph 

G’=(V’, E’) if V⊆V’ and for any pair of vertices v1, v2∈V, there is a path in G connecting v1 to v2 

if and only if there is a path in G’ connecting v1 to v2. If G is a temporal subgraph of G’, then G’ 

is a temporal supergraph of G. 

Definition 9. Given a set TGS of temporal graphs, a temporal graph G in TGS is maximal if G is 

not a temporal subgraph of any other temporal graph in TGS.  

 

Problem statement: Given a set of process instances, the temporal pattern discovery is to find 

the maximal temporal graphs among all frequent temporal graphs. Each such temporal graph is 

referred to as a temporal pattern. 

 

4. Temporal Pattern Discovery Algorithms 

In this section, three different algorithms, namely TP-Graph, TP-Itemset, and TP-Sequence, 

are proposed for the described temporal pattern discovery problem. TP-Graph precedes its 

discovery process directly based on the temporal graph representation. On the other hand, 

TP-Itemset extends the Apriori algorithm (Agrawal and Srikant, 1994) for discovering 

temporal patterns from a set of process instances, each of which is represented as a set of 

temporal relationships. Finally, in the TP-Sequence algorithm, each process instance is 

represented as a quasi-sequence where the overlapping and followed-by relationships in each 

process instance are properly preserved. Accordingly, a sequential pattern discovery technique, 

specifically the AprioriAll algorithm (Agrawal and Srikant, 1995), is extended to discover 

temporal patterns from the set of quasi-sequences. 
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4.1 TP-Graph Algorithm 

As with association rule (Agrawal and Srikant, 1994) and sequential pattern (Agrawal and 

Srikant, 1995) algorithms, the TP-Graph algorithm exploits the downward closure property of 

the support measure to improve the efficiency of searching for frequent temporal graphs. The 

downward closure property suggests that if a temporal graph G has support of at least s%, any 

temporal subgraph of G must have a support of at least s%. In other words, if a temporal graph 

G has a support of less than s%, any temporal supergraph of G definitely will have support of 

less than s%. Accordingly, we adopted an iterative procedure similar to that in the Apriori 

(Agrawal and Srikant, 1994) and AprioriAll (Agrawal and Srikant, 1995) algorithms. 

Specifically, potentially frequent temporal graphs (or called candidate temporal graph) of size 

k are constructed by joining frequent temporal graphs of size k−1. The process instances are 

then scanned to identify frequent temporal graphs of size k from the set of candidate temporal 

graphs of the same size. The resultant frequent temporal graphs are then used to prune the 

non-maximal frequent temporal graphs derived in the previous iteration (i.e., k−1). This 

procedure is iteratively executed until no further frequent temporal graphs can be found. Let Ck 

and Lk denote the set of candidate temporal graphs and the set of frequent temporal graphs of 

size k, respectively. Each iteration k performs the following three steps whose challenges and 

solutions are detailed in the following subsections, respectively. 

1. If k=1, Ck is the set of all single-activity temporal graphs. Otherwise, Ck is generated by 

joining in pair-wise the frequent temporal graphs of size k−1 (i.e., Lk-1). 

2. Scan the process instances to determine Lk from Ck.  

3. If k>1, prune from Lk-1 all non-maximal temporal graphs that are temporal subgraphs of 

any temporal graph in Lk.  

 

4.1.1 Joining Frequent Temporal Graphs 

Intuitively, two frequent temporal graphs of size k−1 can be joined if they differ only in one 
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activity and contain the same temporal relationships for any pair of common activities. 

However, this simple-minded joining process will result in many redundant candidate temporal 

graphs. Consider the following example. Suppose the set of frequent temporal graphs in 

iteration 2 be {A→B1, B→C, A→C}. Any pair in the set can be joined to form the candidate 

temporal graph of A→B→C. That is, three identical candidate temporal graphs of size 3 will be 

generated. In the following, a joining algorithm is proposed to eliminate or reduce such 

redundancy. 

 

Definition 10. Let G be a temporal graph and v be a vertex in G. The operation of subtracting v 

from G, denoted as G−{v}, deletes v and its associated edges from G. In addition, transitive 

edges via v are reconstructed by connecting each source vertex of incoming edges of v to each 

destination vertex of outgoing edges of v.  

 

This subtraction operation can be illustrated as follows. Figure 2(b)-(f) show all of the temporal 

subgraphs resulted from subtracting a vertex from the temporal graph G shown in Figure 2(a). 

When the vertex B is subtracted from G, edges A→C and A→D are reconstructed as shown in 

Figure 2(b). As shown in Figure 2(c), the deletion of the vertex C from Figure 2(a) does not 

introduce any new edge since C does not have any outgoing edge in G. Figure 2(d), (e), and (f) 

illustrate the remaining temporal subgraphs derived from Figure 2(a) by deleting D, E, and A, 

respectively. 

 

Observation 1. Let s be a vertex without incoming edges (called a source vertex) and e be 

another vertex without outgoing edges (called a sink vertex) in a temporal graph G. If G is 

frequent, both G−{s} and G−{e} must be frequent.  

                                                 
1 This simplified representation differs from the temporal graph representation defined in Definition 5. Here, 
A→B denotes a temporal graph consisting of activities A and B where A is directly followed by B. 
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Based on this observation, to determine whether two frequent temporal graphs can be joined, 

only their source vertices and sink vertices need to be considered. Accordingly, we formally 

define joinable temporal graphs as follows. 

Definition 11. Two temporal graphs Gi and Gj are said to be joinable, if there exists a source 

vertex s in Gi and a sink vertex e in Gj such that Gi−{s} = Gj−{e} and s ≠ e. 

 

Consider the temporal graphs shown in Figure 3. Designating vertex B as a source activity of 
G1 shown in Figure 3(a) and vertex D as a sink activity of G2 shown in Figure 3(b), these two 
temporal graphs are joinable since G1−{B} = G2−{D}. The temporal graphs G1 and G3 or G2 

and G3, however, are not joinable. 

 

Given two joinable temporal graphs Gi (with s being a source vertex) and Gj (with e being a 

sink vertex), the temporal relationship between any pair of activities (except that between s and 

e) present in Gi or Gj will be preserved in a resulting candidate temporal graph. Since more than 

one permissible temporal relationship between s and e may exist, the joining of two joinable 

temporal graphs of size k–1 can lead to multiple candidate temporal graphs of size k. The 

temporal relationship between s and e in a candidate temporal graph can be: 1) no edge exists 

between s and e or 2) an edge connects s to e. Note that the case where an edge connects e to s 

need not be considered, as it results in a temporal graph with s and e not being source and sink 

vertices respectively. Formally, the join set of two joinable temporal graphs Gi (with s being the 

source vertex) and Gj (with e being the sink vertex) is composed of 

1. Gi ∪ Gj
2, and 

2. Gi ∪ Gj ∪ {s→e} if there does not exist a path from s to e in Gi ∪ Gj. 

 

Consider the two joinable temporal graphs G1 and G2 shown in Figure 3. The join set of G1 

                                                 
2 The union of two graphs Gi=(Vi, Ei) and Gj=(Vj, Ej) results in a new graph G=(Vi∪Vj, Ei∪Ej). 
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(with B being a source vertex) and G2 (with D being a sink vertex) includes two candidate 

temporal graphs of size 4 as shown in Figure 4. 

 

The previously described downward closure property can further be exploited to reduce the set 

of resulting candidate temporal graphs. A candidate temporal graph G of size k will not be 

frequent if any of its temporal subgraphs of size k−1 is not in Lk-1 and, hence, should be 

eliminated from Ck. Such pruning process requires, for each candidate temporal graph of size k, 

the derivation (using the subtraction operation defined in Definition 10) of all of its temporal 

subgraphs of size k–1. The pseudo code of GenerateCandidateGraph() for generating a set of 

candidate temporal graphs of size k from a set of frequent temporal graphs of size k−1 and that 

of DeriveSubgraph() for deriving all temporal subgraphs of size |G|−1 for a temporal graph G 

are listed below. 

 

GenerateCandidateGraph(a set of frequent temporal graphs: TGS): a set of temporal graphs 
{ 

CandidateSet = Ø; 
For (each pair of graphs (Gi, Gj) in TGS) { 

For (each source vertex s in Gi) { 
For (each sink vertex e in Gj) { 

If (s ≠ e and Gi−{s}= Gj−{e}) { /* joinable */ 
UG1 = Gi ∪ Gj; UG2 = Gi ∪ Gj ∪ {s→e};  
CandidateSet = CandidateSet ∪ {UG1}; 
If there exists no path from s to e in UG1  
Then CandidateSet = CandidateSet ∪ {UG2}; 

   } /* end-if */ 
} /* end-for */ 

} /* end-for */ 
} /* end-for */ 
For (each graph G in CandidateSet) { 

If DeriveSubgraph(G) ∩ TGS ≠ DeriveSubgraph(G) 
Then CandidateSet = CandidateSet – {G}; 

} /* end-for */ 
Return CandidateSet; 

} 

 

DeriveSubgraph(a temporal graph: G): a set of temporal graphs 
{ 
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Subgraph = Ø; 
For (each vertex v in G) { 

Source = the set of vertices incident to v; 
Sink = the set of vertices incident from v; 
SG = G – {v}; 
For (each vertex pair (vs, vd) where vs ∈ Source and vd ∈ Sink) { 

If there does not exist a path between vs and vd in SG then SG = SG ∪{vs→vd}; 
} /* end-for */ 
Subgraph = Subgraph ∪ {SG}; 

} 
Return Subgraph; 

} 

 

4.1.2 Scanning Process Instances 

To find frequent temporal graphs from a set of candidate temporal graphs, we have to compute 

their support by scanning the set of process instances. To efficiently decide the set of candidate 

temporal graphs that a given process instance supports, we adopted the hash-tree data structure 

proposed by Agrawal and Srikant (1994 and 1995). Use of the hash-tree to store candidate 

temporal graphs of the same size requires a total order on the vertices in each temporal graph. 

In this study, the vertices of each temporal graph are sorted based on its graph topology. A 

topological sort of graph G is a linear ordering of all its vertices such that if G contains an edge 

(u, v), then u appears before v in the ordering (Cormen et al., 1989). To ensure a unique 

topological sort for a given temporal graph, the lexicographic order is applied to vertices that 

are temporally overlapped. The resulting order is called the temporal sequence of a temporal 

graph. For instance, the temporal sequence of the temporal graph shown in Figure 4(a) is <A, B, 

C, D>. 

 

A node in the hash-tree either contains a set of temporal graphs (a leaf node) or a hash table (an 

interior node). Each bucket in the hash table of an interior node points to a child node. To insert 

a candidate temporal graph G, we start from the root and follow appropriate pointers until a leaf 

node is reached. At an interior node at depth d (assuming the depth of the root node of the 
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hash-tree be 1 and that of a child node of an interior node at depth d be d+1), we decide which 

branch to follow by applying a hash function to the d-th vertex in the temporal sequence of G. 

Initially, the root node is a leaf node. When a leaf node L at depth d overflows (i.e., the number 

of temporal graphs in the leaf node exceeds a specified threshold), L is converted to an interior 

node and several leaf nodes are created as the child nodes of L. Subsequently, the temporal 

graphs originally stored in L are distributed to these leaf nodes by applying the hashing 

function to the d-th vertices in their temporal sequences.  

 

Such a hash-tree, once constructed, can be used to determine the subset of candidate temporal 

graphs that is supported by a given process instance P by traversing the hash-tree. Let S denote 

the temporal sequence of P. The traversal starts at the root node by applying the hashing 

function on every vertex in S to determine the set of nodes at depth 2 to visit. At an interior 

node to which a vertex a in S has just hashed, the hashing function is then applied to each vertex 

after a in S. The traversal process continues until leaf nodes are reached. At each leaf node 

reached, the candidate temporal graphs in the leaf supported by P are identified and their 

support counts are incremented by one. After scanning all the process instances, the candidate 

temporal graphs whose support exceeds the user specified minimum threshold form the set of 

frequent temporal graphs of this iteration. 

 

Consider a segment of hash-tree for candidate temporal graphs of size 3 as shown in Figure 
5(b). By hashing on every vertex in the temporal sequence <B, C, E, D> of the process instance 
P shown in Figure 5(a), we examine those nodes that start with B, C, E, or D, respectively. In 
this case, the nodes 3 and 4 will be visited next. At node 3 in the hash-tree shown in Figure 5(b), 
we can only hash on vertex C, E and D since we have reached node 3 by previously hashing on 
vertex B. As a result, node 7 will then be visited. On the other hand, since node 4 is a leaf node, 
whether its candidate temporal graph (i.e., G6) is supported by P is then examined. Similarly, 
the temporal graphs (i.e., G4 and G5) in node 7 will be examined against P and the support of G4 

is incremented by 1 since it is supported by P.  
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The pseudo code for inserting a candidate temporal graph into a hash-tree, named 

AddOneGraph(), and that for traversing the hash-tree for a given process instance, named 

Traverse(), are listed below. Note that Traverse() is a recursive function that takes three 

parameters, namely the current node C of the hash-tree, the target process instance P, and the 

position of the vertex in P that previously hashed to C. Initially, we call Traverse(root of the 

hash-tree, P, 0). 

 

AddOneGraph(a hash-tree: T, a temporal graph: G with temporal sequence <v1, v2, …, vn>) 
{ 

C = root of T; Level = 1; /* initialize */ 
While C is not a leaf node of T do { 

C= C.Hash(vLevel); 
Level++; 

}  
Insert G into C; 
If C is full  
{  

Create a hash table H with each entry pointing to a new leaf node; 
For each temporal graph R in C 
{ 

Assign R to a leaf node by hashing on the Level’th vertex of R’s temporal sequence; 
} /* end-for */ 
Assign the hash table H to C;  

   } /* end-if */ 
} 
 
Traverse(a node pointer: C, a process instance: P with temporal sequence <v1, v2, …, vn>, 
previous position: s) 
{ 

If (C is a leaf node) { 
For (each temporal graph G in C) { 

If G is supported by P then G.count++; 
} /* end-for */ 

} 
else { 

position = s; 
Do { 

NewC = C.Hash(vposition); 
Traverse(NewC, P, position+1); 
position++; 

} While (position ≤ n); 
} /* end-if */ 

} 
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Theorem 1 shows that this traversal procedure indeed returns the desired result. 

Lemma 1. For each candidate temporal graph G supported by a process instance P, the 

temporal sequence of G must be a subsequence3 of the temporal sequence of P. 

Proof: Let SG = <v1, v2, …, vk> and SP be the temporal sequences of G and P, respectively. For 

any pair of vertices vi and vj in SG where i < j, there are two possibilities on their temporal 

relationships: vi is followed by vj in G, and vi and vj are overlapped but vi precedes vj 

lexicographically. Since P supports G, it is clear that in either case the same relationship holds 

between vi and vj in P. Therefore, vi appears before vj in SP. � 

 

Theorem 1. For a given process instance P, the traversal of the hash-tree examines every 

candidate temporal graph supported by P. 

Proof: It is obvious that the traversal of the hash-tree for P exhausts all the subsequences of the 

temporal sequence of P. According to Lemma 1, these nodes include all the candidate temporal 

graphs supported by P. � 

 

Use of a hash-tree at iteration k can not only facilitate fast counting the support of candidate 

temporal graphs of size k but also improve efficiency of constructing the set of candidate 

temporal graphs of size k+1. Considering the hash-tree for candidate temporal graphs of size 3 

shown in Figure 5, suppose that the temporal graph G1 (i.e., A→B→C) has been found to be 

frequent. To find temporal graphs that are joinable with G1, we need only to visit those leaf 

nodes that are reachable by hashing on B followed by C (assuming A is selected as the source 

vertex in G1). In this case, both temporal graphs contained in the node 7 (i.e., G4 and G5) are 

joinable with G1. This search process of which correctness is ensured by Theorem 2 greatly 
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reduces the overhead required to establish joinable temporal graphs for a given temporal graph. 

 

Theorem 2. Let G be a frequent temporal graph with the temporal sequence being <v1, v2, …, 

vk>. There must exist two joinable frequent temporal subgraphs G1 and G2 with temporal 

sequences being <v1, v2, …, vk-1> and <v2, v3, …, vk> respectively. In addition, the join set of G1 

and G2 includes G.  

Proof: It is obvious from Observation 1 that subtracting vk from G results in a frequent 

temporal subgraph G1 with the temporal sequence being <v1, v2, …, vk-1> and that subtracting v1 

from G results in a frequent temporal subgraph G2 with a temporal sequence <v2, v3, …, vk>. 

Besides, since G2−{vk} = G1−{v1}, G1 and G2 are joinable, and their join set includes G. � 

 

4.1.3 Pruning Non-maximal Temporal Graphs 

Apparently, if a temporal graph G is frequent, all of its temporal subgraphs also are frequent. 

According to Definition 9, the temporal subgraphs of G are not maximal and should be pruned 

since they reveal less information on frequent activities and temporal relationships than G. To 

retain only maximal temporal graphs, PruneSubgraph() is invoked at each iteration to 

eliminate any non-maximal temporal graphs obtained at the previous iteration. 

 

/* TGSn is the set of frequent temporal subgraphs obtained at iteration n */ 
PruneSubgraph(a set of graphs: TGSn-1, a set of graphs: TGSn): a set of temporal graphs 
{ 

For (each graph G in TGSn) { 
SG = DeriveSubgraph(G)4; 
TGSn-1 = TGSn-1 − SG; 

} /* end-for */ 
Return TGSn-1; 

                                                                                                                                                        
3 A sequence X = <x1, x2, …, xm> is a subsequence of another sequence Y = <y1, y2, …, yn> if there exists a strictly 
increasing sequence <i1, i2, …, im> of indices of Y such that for all j = 1, 2, …, m, we have xj = yij (Cormen et al., 
1989). 
4 For ease of illustration, PruneSubgraph(TGSn-1, TGSn) invokes DeriveSubgraph(G) to determine all the 
temporal subgraphs of G by dropping a vertex in G. However, by maintaining an appropriate data structure that 
keeps the links between a temporal graph and its subgraphs when generating candidate temporal graphs, 
DeriveSubgraph() need not be invoked and this step can efficiently be performed. 
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} 

 

4.2 TP-Itemset Algorithm  

TP-Itemset extends the Apriori algorithm (Agrawal and Srikant, 1994) for discovering 

temporal patterns from a set of process instances. In TP-Itemset, each possible temporal 

relationship in a process instance P is explicitly represented as an item in the itemset for P. 

Each item in an itemset is of the form vi→vj if the activity vi is followed by vj or vi~vj if the 

durations of activities vi and vj are temporally overlapped (where ~ denotes an overlapping 

relationship and vi < vj in their lexicographical order). For example, as shown in Figure 6, the 

process instance 1 is represented as {A~B, A→C, B→C}, while the process instance 2 is 

represented as {A~B, A→C, B~C}. With this representation, n(n-1)/2 items are required to 

represent a process instance possessing n activities. 

 

As with the association rule discovery technique, an itemset that has certain user-specified 

minimum support is called a large itemset, while a potentially large itemset is called a 

candidate itemset. The TP-Itemset algorithm is similar to the Apriori algorithm but with 

several distinctions. First, unlike in the Apriori algorithm where resulting large itemsets are 

unrestricted, a large itemset generated by the TP-Itemset algorithm needs to satisfy additional 

constraints. Let VI = {v1, v2, …, vk} be the set of distinct activities involved in an itemset I. An 

itemset I is referred to as a full itemset if the temporal relationship between any pair of 

activities, vi and vj where vi ∈ VI, vj ∈ VI, and vi ≠ vj, exists in I. Otherwise, I is a partial itemset 

due to the absence of some temporal relationships in I. In effect, each full and large itemset 

corresponds to a frequent temporal graph defined in Definition 7. For instance, {A~B, A→C, 

B→C} is a full itemset, while {A~B, A→C} is a partial itemset since the relationship between 

activities B and C is unspecified. Hence, large itemsets generated by the TP-Itemset algorithm 

are required to be full itemsets. Second, the set of large itemsets generated by the Apriori 
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algorithm need not retain only the maximal itemsets each of which is not a subset of any other 

large itemsets. However, since temporal pattern discovery is interested only in finding the 

maximal temporal patterns among all frequent temporal patterns, pruning non-maximal 

itemsets is deemed necessary. 

 

Given a set of process instances, the TP-Itemset algorithm transforms them into a set of full 

itemsets and generates the maximal itemsets among all full and large itemsets. Each such 

maximal, full and large itemset represents a temporal pattern. Let Lk be a set of large k-itemsets 

each of which has k items (i.e., k temporal relationships) and Ck be a set of candidate k-itemsets, 

where Ck can be constructed by joining large itemsets in Lk–1. In the Apriori algorithm, the 

joining procedure requires that items within an itemset be kept in their lexicographic order. In 

this study, since each item (vi→vj or vi~ vj) involves two activities, the lexicographical order of 

a set of items is based on their first activities (i.e., vi) and then on their second ones (i.e., vj). 

Moreover, the partial itemsets from Lk–1 should not be removed immediately at each iteration 

k–1, since two partial (k–1)-itemsets may result in a full itemset in Ck. For instance, joining two 

partial, large itemsets in L2, {A→B, A→C} and {A→C, B~C}, results in a full itemset {A→B, 

A→C, B~C}. Finally, to facilitate fast counting the support for the candidate itemsets in Ck, 

candidate itemsets are stored in a hash-tree as employed by the Apriori algorithm (Agrawal and 

Srikant, 1994). Accordingly, the TP-Itemset algorithm for discovering temporal patterns is 

listed below.  

 

TP-Itemset(a set of process instances: P, the minimum support: minsup): a set of large, full and 
maximal itemsets 
{ 

Transform each process instance p ∈ P into a process itemset i in I; 
L1 = {large 1-itemsets}; 
MaxK= 1; 
For (k = 2; Lk-1≠Ø; k++) 
{ 

  Generates candidate itemsets Ck from Lk-1;  
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  For each process itemset i ∈ I 
  { 
   Ct = subset5(Ck, i); /* find candidate itemsets that are supported by i */ 
   For each candidate c ∈ Ct do c.count++; 

  } /* end-for */ 
   Lk = {c ∈ Ck | c.count ≥ minsup}; 
  If (Lk ≠ Ø) then MaxK = MaxK+1; 

} /* end-for */ 
For (k=MaxK; k>1; k--) 
{ 

  Prunes partial itemsets in Lk; 
For each itemset s in Lk 
{ 

Prunes all sub-itemsets of s from Lk-1, Lk-2, …, L1; 
  } /* end-for */ 

} /* end-for */ 
Return ∪k≥1Lk; 

} 

 

4.3 TP-Sequence Algorithm 

TP-Sequence is based on the sequential pattern discovery technique (specifically, the 

AprioriAll algorithm) to discover temporal patterns from a set of process instances. In the 

TP-Sequence algorithm, the overlapped and followed relationships in each process instance are 

explicitly represented as a sequence, where an itemset is a non-empty set of overlapping 

activities, and a sequence is an ordered list of itemsets. The itemset {x, y} denotes that activities 

x and y are temporally overlapped. A sequence with an ordered list of k itemsets is called a 

k-sequence. For instance, a 2-sequence <{x}{y}> denotes that the activity x is followed by y. 

Furthermore, a 2-sequence <{x, y}{y, z}> denotes that activity x is followed by z, while y 

overlaps with x and z. As shown in Figure 6, the process instance 1 is represented as a sequence 

of <{A, B}{C}>, while the process instance 2 is represented as <{A, B}{B, C}>. Using this 

representation, a process instance is represented as an m-sequence where l ≤ m ≤ k, l is the 

                                                 
5 Using the hash-tree constructed for Ck, the subset(Ck, i) function is to find all the candidate itemsets in Ck that are 
supported by the itemset i. We employed and implemented the subset function as proposed in (Agrawal and 
Srikant, 1995). 
7 In pass 2 and 3, the difference on the number of candidates between TP-Graph and TP-Sequence was less than 
0.02%, while at pass 11, TP-Sequence generated about 10% more candidates than TP-Graph did. 
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number of activities in the longest path in the respective temporal graph, and k is the number of 

activities in the process instance. 

 

In the traditional sequential pattern discovery, no specific constraint is imposed on itemsets in a 

sequence. However, since a sequence in the TP-Sequence algorithm is used to represent both 

the followed and overlapped relationships, a meaningful sequence needs to satisfy certain 

constraints. We call a sequence <{x}{x, y}> a non-canonical sequence since it is identical to 

<{x, y}>. We say a sequence <{x, y} {y, z} {x, z}> is an illegitimate sequence since x appears 

over discontinuous intervals. Furthermore, an illegitimate sequence such as <{x, y} {w} {x, z}> 

even exhibits contradictory temporal relationships as both “x followed by w” and “w followed 

by x” exist; thus, violating the irreflexivity of followed relationships. Hence, for discovering 

temporal patterns, the AprioriAll algorithm needs to be extended to ensure that any candidate 

sequence generated be canonical and legitimate. Let ai be an itemset. Canonical and legitimate 

sequences are formally defined as follows. 

Definition 12. A sequence s = <a1 a2 … am> is canonical if for each itemset aj, 1≤ j < m, aj ⊄ 

aj+1 and aj+1⊄ aj.  

Definition 13. A sequence s = <a1 a2 … am> is legitimate if for each item x involved in s, the 

itemsets that contain x form a continuous subsequence in s. 

 

To distinguish an unconstrained sequence from a sequence with canonicity and legitimacy 

properties (as required by the TP-Sequence algorithm), the latter is called a quasi-sequence. 

The transformation of a process instance P into its respective quasi-sequence proceeds in the 

following iterative manner. The quasi-sequence is initialized as an empty list. We traverse the 

starting and ending times of activities in P in ascending order. The set O of overlapped 

activities starts to accumulate when the first starting time is visited. When the first ending time 

is encountered, the set O is appended to the quasi-sequence. Subsequently, we continue the 
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traversal until the next starting time (assuming its respective activity be v) is visited. At this 

moment, the subset of activities in O whose ending times appear before the starting time of v 

are removed from O since this subset of activities that have appeared in the quasi-sequence are 

followed by v. This traversal procedure continues until all the timestamps are visited. Let us 

illustrate this transformation using the process instance shown in Figure 7(a). As shown, when 

the first ending time (which belongs to A) is visited, O={A, B} and, thus, the current 

quasi-sequence is <{A, B}>. Since only A’s ending time appears before the next starting time 

(that pertains to C), only A is removed from O. When the next ending time (that pertains to B) is 

visited, O={B, C, D} and, therefore, the quasi-sequence becomes <{A, B}{B, C, D}>. When 

the following starting time (that is possessed by E) is visited, O becomes empty because the 

ending times of B, C, and D have all been traversed. When the last ending time (which belongs 

to E) is visited, O={E}, and the resultant quasi-sequence is <{A, B}{B, C, D}{E}> as shown in 

Figure 7(b). The pseudo-code of the described transformation is listed in the following. 

 
Generate-Quasi-Sequence(a process instance: P): a quasi-sequence 
{ 
 Quasi-Seq = <>; /* Initialization of a quasi-sequence */ 
 Sort the timestamps of activities in P and place them in a queue time; 
 O = Ø; 
 While time ≠ null { 

if time.event = ‘starting time’ { 
add time.activity to O; 
time = time.next; 

  } 
else {/* time.event = ‘ending time’ */ 
 Append O to Quasi-Seq; 
 While (time ≠ null) and (time.event = ‘ending time’) { 
  O = O − time.activity; 
  time = time.next; 
 } /* end-while */ 
} /* end-if */ 

 } /*end-while */ 
 Return Quasi-Seq; 
} 
 

In a quasi-sequence, when an activity v appears in two consecutive itemsets Ij and Ij+1, v is 
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temporally overlapped with the remaining activities in Ij and Ij+1, rather than v in Ij taking place 

before the activities in Ij+1 and v in Ij+1 occurring after the activities in Ij. This unique 

interpretation requires re-definition of the subsequence relationship used by the sequential 

pattern discovery algorithm. Using the example shown in Figure 7, the process instance is 

represented as a 3-quasi-sequence <{A, B}{B, C, D}{E}>. In the sequential pattern discovery, 

the sequence <{B}{C}> is considered to be supported by (or a subsequence of) <{A, B}{B, C, 

D}{E}>. However, the quasi-sequence <{B}{C}> indeed denotes a followed relationship 

between B and C, which differs from an overlapped relationship in the process instance under 

discussion. Thus, the quasi-sequence <{B}{C}> is not supported by <{A, B}{B, C, D}{E}> in 

the temporal pattern discovery. The re-defined subsequence relationship (formally defined in 

Definition 14) is needed when determining support for candidate quasi-sequences as well as 

pruning non-maximal quasi-sequences. 

 

Definition 14. A quasi-sequence s = <a1 a2 … an> is supported by (or called a subsequence of) 

another quasi-sequence t = <b1 b2 … bm>, if there exists integers i1 < i2 < … < in such that a1 ⊆ 

bi1, a2 ⊆ bi2, …, an ⊆ bin, and there exist no consecutive itemsets aj and aj+1 in s such that v ∈ aj, 

u ∈ aj+1, and the itemset {u, v} ⊆ bij or {u, v} ⊆ bij+1. 

 

Accordingly, the TP-Sequence algorithm, extending the AprioriAll algorithm, finds the 

maximal quasi-sequences among all frequent quasi-sequences. Each such quasi-sequence 

corresponds to a temporal pattern. The TP-Sequence algorithm employs the same hash-tree 

data structure as the AprioriAll algorithm for storing candidate quasi-sequences in Ck and fast 

counting their support (Agrawal and Srikant, 1995). The pseudo-code for the proposed 

TP-Sequence algorithm is listed as follows. 

 



25 

TP-Sequence (a set of process instances: TPS, the minimum support: minsup): a set of large 
quasi-sequences 
{ 
 QSS = Ø; /* QSS contains a set of quasi-sequences for process instances */ 
 For each process instance P in TPS 

{ 
QSS = QSS ∪ Generate-Quasi-Sequence(P); 

 } /* end-for */ 
L1 = {large 1-quasi-sequences};  
For (k = 2; Lk-1 ≠ Ø; k++) 
{ 

  Ck = candidate sequences generated from Lk-1;  
 Delete non-canonical and illegitimate sequences in Ck; 

  For each quasi-sequence qs in QSS 
  { 
   Increment the count of all candidates in Ck that are supported by qs; 
  } /* end-for */ 

 Lk = {c ∈ Ck | c.count ≥ minsup}; 
For each quasi-sequence s in Lk do 
{ 

Delete all sub-sequences of s from Lk-1; 
  } /* end-for */ 

} /*end-for */ 
Return ∪k≥1Lk; 

} 

 

5. Performance Evaluation 

In this section, we evaluate the performance and scale-up properties of the three proposed 

algorithms for finding temporal patterns. The experiments were conducted on an IBM 

compatible PC with a CPU clock rate of 500 MHz and 128 MB of main memory, running 

FreeBSD 4.1. Since we intend to examine the performance and scalability of the proposed 

algorithms over a wide range of data characteristics, finding real-world data sets for our 

evaluation would have been extremely difficult, if not impossible. Thus, synthetic data sets 

were generated and employed for the evaluation. 

 

5.1 Generation of Synthetic Data 

To generate synthetic data set consisting of process instances, we adopted and extended the 

transaction generation model proposed in (Agrawal and Srikant, 1994; Agrawal and Srikant, 
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1995; Srikant and Agrawal, 1996) for evaluating the Apriori and AprioriAll algorithms. In our 

model of process executions, process instances are not randomly designed but tend to contain 

sets of temporally related activities, each of which is a potential temporal pattern. Furthermore, 

process instances are generated based on these potential temporal patterns. However, a process 

instance might include only a subset of activities from a potential temporal pattern. 

 

Given a set A of available activities with size N, we first generate a pool of potential temporal 

patterns. The number of such patterns generated is set to PN. A potential temporal pattern P is 

generated by first determining its size (i.e., the number of activities) from a Poisson distribution 

with mean equal to PS. Activities in the first potential temporal pattern are chosen randomly. 

To model the phenomenon where temporal patterns may involve common activities, some 

percentage of activities in P, determined by an exponentially distributed random variable with 

mean equal to the correlation ratio (CR), are randomly chosen from the potential temporal 

pattern Q generated immediately prior to P. Subsequently, the remaining activities in P are 

selected randomly without repetition from the rest of activities in A (i.e., excluding all activities 

in Q). In addition, to determine temporal relationships among those activities in P, some 

fraction of activities are chosen and arranged in sequence; thus exhibiting followed 

relationships. We use an exponentially distributed random variable with mean equal to the 

length ratio LR, defined as the maximal number of sequential activities to the total number of 

activities, to decide this fraction for each pattern. Furthermore, without loss of generality, we 

assume the execution duration of each such sequential activity in P be identical. For each 

remaining activity in P, its execution interval ei, bounded by the earliest starting time and the 

latest ending time of the sequential activities decided previously, is randomly determined, thus 

creating overlapped relationships. However, ei should not reside in the time gap between any 

two consecutive sequential activities in order to preserve the pre-decided length ratio for P. 
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After the generation of the set of potential temporal patterns, each pattern is assigned a weight, 

which corresponds to its probability of being selected when generating a process instance. The 

weight is initially picked from an exponential distribution with unit mean and then normalized 

so that the sum of the weights for all of the patterns is 1. Finally, a set of process instances is 

generated. The size of a process instance is picked from a Poisson distribution with mean equal 

to IS. For each process instance, one of the potential temporal patterns is randomly chosen by 

tossing a PN-sided weighted coin, where the weight for a side is the probability of picking the 

associated pattern. If the size of the chosen pattern is not the same as that of the instance, 

surplus activities are randomly dropped or additional activities are randomly added in an 

overlapped manner. 

 

The parameters and their respective default values used for the generation of synthetic data sets 

are summarized in Table 1. Depending on the type of experiments conducted, the respective 

parameter will be examined over a range of values, while the rest of parameters adopt their 

default values. For each particular experiment, 10 trials were performed and the overall 

performance was then estimated by averaging the performance across all trials. 

 

5.2 Effects of Minimum Support Thresholds 

Ten synthetic data sets were generated using the default values for all parameters as depicted in 

Table 1. We investigated the effects of minimum support thresholds, ranging from 2% to 10% 

at increments of 2%, on the execution times of each proposed algorithm. Figure 8(a) shows the 

execution times of the three proposed algorithms as a function of minimum support. As 

expected, the execution times of the three algorithms decreased as the minimum support 

increased. Over the range of minimum supports investigated, a decrease in minimum support 

appeared to have shown marginal effects on the execution times of TP-Graph and TP-Sequence. 

On the other hand, a decrease in minimum support resulted in a noticeable increase in the 
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execution times of TP-Itemset. Across the range of minimum supports examined, TP-Graph 

appeared to have exhibited the best performance, while TP-Itemset performed worst, mainly 

because it generated and counted a much larger number of candidates than the other two 

algorithms. As shown in Figure 8(b), when the minimum support was 2%, the number of 

candidates generated and the number of iterations (i.e., passes) taken by TP-Itemset were 

significantly higher than those produced/required by its counterparts. Such dramatic 

differences could be attributed to their underlying structures for representing and manipulating 

process instances and candidates. TP-Itemset explicitly represents each temporal relationship 

(followed or overlapped) as an item in an itemset and generates candidates at the temporal 

relationship level. Thus, the size of C1 (i.e., containing all possible relationships between pairs 

of activities) considered by TP-Itemset is 3n(n–1)/2, where n is the number of activities, 

leading to even larger candidate sets in the first few passes. TP-Graph and TP-Sequence form a 

candidate temporal graph and a candidate quasi-sequence, respectively, by adding an 

additional activity from the previous iteration. Hence, the number of activities considered in 

pass 1 by either algorithm is n, which is far fewer than those generated by the TP-Itemset when 

n is large. On the other hand, assuming the maximal number of activities in the temporal 

patterns to discover to be s, the number of passes required by TP-Graph and TP-Sequence is at 

most s+1. However, the number of passes for generating and counting candidate itemsets 

would be s(s–1)/2 or higher. The larger candidate sets and higher number of passes considered 

by TP-Itemset resulted in its inferior performance. TP-Graph and TP-Sequence, which 

similarly represent and manipulate process instances and candidates, generated similar 

numbers of candidates at all iterations7 and required the same number of passes for the target 

temporal pattern discovery, leading to superior performances measured by execution time. 

However, a more concise representation of process instances and temporal patterns employed 

in TP-Graph appeared to contribute to its better performance (about 20% faster) than 

TP-Sequence. 
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5.3 Effects of Process Characteristics 

The performances of the three temporal pattern discovery algorithms were evaluated over a 

range of process characteristics described by the size of potential temporal patterns (PS), 

correlation ratio (CR), length ratio (LR), and number of activities (N) available for generating 

potential temporal patterns and process instances. We did not examine the effects of number of 

potential temporal patterns (PN) since varying the value of PN is similar to adjusting the 

minimum support threshold for a given value of PN. 

 

Synthetic data sets were generated for various sizes of potential temporal patterns, ranging 

from 5 to 20 at increments of 5. Remaining parameters received their default values, as defined 

in Table 1. The minimum support was set to 2%. Figure 9(a) shows the execution times of the 

three temporal pattern algorithms as functions of the size of potential temporal patterns. The 

performance of the three algorithms remained largely stable across the sizes of potential 

temporal patterns examined. The resulting execution times of TP-Graph, while slightly lower 

than those of TP-Sequence, were significantly lower than those required by TP-Itemset. 

Various correlation ratios, ranging from 0.1 to 0.9 at increments of 0.1 were also investigated. 

At a minimum support of 2%, a steady performance was achieved by all of the proposed 

algorithms across all correlation ratios examined, as shown in Figure 9(b). As with the previous 

experiment, TP-Graph was relatively comparable to TP-Sequence and outperformed 

TP-Itemset. 

 

In addition, we investigated the effects of length ratios, ranging from 0.1 to 0.9 at increments of 

0.1, on the performance of the three algorithms. As shown in Figure 9(c), at a minimum support 

of 2%, the execution times of TP-Graph and TP-Itemset remained stable across different levels 

of length ratio examined. However, the execution times attained by TP-Sequence increased as 
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length ratio grew from 0.1 to 0.9. A larger length ratio represents a scenario in which potential 

temporal patterns and their respected process instances were more likely to contain sequential 

activities; thus requiring a longer quasi-sequence for representing each process instance. As a 

result, as length ratio increased, the total size of itemsets involved in a quasi-sequence of a 

process instance or a temporal pattern increased and the performance of TP-Sequence degraded. 

Conversely, given the same set of activities appearing in a process instance, an increase in its 

length ratio did not increase the size of the resulting temporal graph or itemset. Thus, length 

ratio appeared to have no effect on the execution times of TP-Graph and TP-Itemset. Overall, 

TP-Graph was the most efficient algorithm, followed by TP-Sequence and finally TP-Itemset. 

 

Finally, the effects of the numbers of activities (ranging from 400 to 1600 at increments of 200) 

available for generating potential temporal patterns and the process instances on the 

performance of the three algorithms were examined. The minimum support was again set to 

2%. As shown in Figure 9(d), the performance of the three algorithms remained largely stable 

across different numbers of activities examined. The execution times needed by TP-Graph, 

largely comparable to those by TP-Sequence, were significantly lower than those attained by 

TP-Itemset. 

 

5.4 Scale-up Experiments 

The scalability experiments in this study were designed from two different perspectives: (1) by 

increasing the average size of process instances (IS) while keeping the number of process 

instances constant and (2) by increasing the number of process instances (D) while keeping the 

average size of process instances constant. The first scale-up experiment increased the average 

size of process instances, ranging from 10 to 60 at increments of 10. The remaining parameters 

received their default values as depicted in Table 1. Figure 10(a) shows the execution times 

required by TP-Graph, TP-Itemset and TP-Sequence, respectively, at a minimum support of 
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2%. We did not plot the execution times for TP-Itemset when the size of process instances was 

greater than 40, since TP-Itemset generated too many candidates and ran out of memory. When 

the size of process instances increased from 10 to 40, the execution time of TP-Itemset 

increased proportionally. However, the execution times of TP-Graph appeared to scale fairly 

quadratically across the range of sizes of process instances examined. Because each process 

instance is represented as a graph that requires quadratic manipulation, the execution time 

increases toward a quadratic trend as the size of process instances expands linearly. On the 

other hand, the execution times of TP-Sequence appeared to increase with the number of 

instances at a slower pace. Such a near-linear performance with respect to the size of process 

instances can be attributed to the linear manipulation of sequences of itemsets. When the size 

of process instances was below 30, TP-Graph was the most efficient algorithm. However, as 

the size of process instances exceeded 30, TP-Sequence exhibited better performance. 

 

The second scale-up experiment varied the number of process instances (D), ranging from 

10,000 to 50,000 at increments of 10,000, while adopting their default values for the remaining 

parameters. Figure 10(b) shows the performances of the proposed algorithms as a function of 

the number of process instances, at a minimum support of 2%. As shown, all of the proposed 

algorithms grew almost linearly with the number of process instances. The increasing rate for 

TP-Graph appeared to be the smallest, while TP-Itemset exhibited the worst performance and 

scalability with respect to the number of process instances. 

 

6. Conclusions and Future Research Directions 

As huge volumes of process data with temporal context are collected by and maintained in 

organizations, discovering within these data frequently occurring activities and their respective 

temporal relationships (referred to as temporal patterns in this study) is essential to establishing 

a foundation for reengineering a business process and managing workflow evolution and 
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exceptions. The discovery of temporal patterns can also be applied to various application 

domains (e.g., healthcare and project management) for crucial business decision support. 

Motivated by the importance of and need for discovering such temporal patterns from process 

data, we formally defined the temporal pattern discovery problem, and developed and 

evaluated three different temporal pattern discovery algorithms, namely TP-Graph, TP-Itemset 

and TP-Sequence, for finding a set of temporal patterns from process instances. 

 

Using synthetic data sets, we analyzed the performance, over a range of data characteristics, 

and scale-up properties of the three proposed algorithms. The experimental results showed that 

the size of potential temporal patterns, correlation ratio, length ratio and the number of 

available activities had no, or at most marginal, effects on the execution times of the proposed 

algorithms. Overall, TP-Graph appeared to achieve the best performance. Due to its 

representation and manipulation that treat each temporal relationship in a process instance as 

an individual item, TP-Itemset exhibited the worst performance. In terms of scale-up properties, 

the experimental results suggested that the execution times of TP-Sequence and TP-Itemset 

grew linearly as the size of process instances expanded linearly, while those of TP-Graph 

increased toward a quadratic growth. The experimental results also suggested that the three 

proposed algorithms scaled linearly with the number of process instances, with the TP-Graph 

algorithm achieving the best scalability. 

 

Some ongoing and future directions along this line of research are summarized as follows. The 

described process mining problem concentrates on finding temporal patterns among activities; 

thus, only their respective temporal relationships in process instances were considered. 

However, activities in a process instance are often described by such properties as execution 

entity(s) involved, execution location, and execution outcome. Hence, the process mining 

problem and the proposed algorithms can be extended for discovering temporal patterns at the 
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activity property level. From the theoretical viewpoint, the proposed techniques can be 

generalized and extended beyond the temporal context by considering other types of 

relationships (e.g., spatial or structural relationships). Such extension can be applied to a 

broader spectrum of application domains. From the practical viewpoint, applying the proposed 

techniques to support of workflow evolutions and exceptions, and other business decisions 

represents interesting and desirable directions for future research. 
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Figure 2. Examples of Subtraction Operation 
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Figure 4. Two Candidate Temporal Graphs Resulting from Joining G1 and G2 in Figure 3 
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Figure 8. Experimental Results: Effects of Minimum Support Thresholds 
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Figure 9. Experimental Results: Effects of Process Characteristics 



40 

 

 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 20 30 40 50 60
Size of Process Instances (IS )

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

0

5000

10000

15000

20000

25000

10000 20000 30000 40000 50000
Number of Process Instances (D )

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

TP-Graph TP-Itemset TP-Sequence
 

        (a) Effects of Sizes of Process Instances (IS)                   (b) Effects of Numbers of Process Instances (D) 

Figure 10. Results of Scale-up Experiments 
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Table1. Parameters and Default Values for Synthetic Data Generation 

Symbol Description Default 
N 
D 
IS 
PN 
PS 
CR 
LR 

Number of activities 
Number of process instances 
Size of process instances 
Number of potential temporal patterns 
Size of potential temporal patterns 
Correlation ratio 
Length ratio 

1,000 
10,000 

20 
1,000 

10 
0.5 
0.5 

 

 


