
i

Discovery of Temporal Patterns from Process Instances

San-Yih Hwang*, Chih-Ping Wei, and Wan-Shiou Yang

Department of Information Management
National Sun Yat-Sen University

Kaohsiung, Taiwan, R.O.C.

Abstract
Existing work in process mining focuses on the discovery of the underlying process model
from their instances. In this paper, we do not assume the existence of a single process model to
which all process instances comply, and the goal is to discover a set of frequently occurring
temporal patterns. Discovery of temporal patterns can be applied to various application
domains to support crucial business decision-making. In this study, we formally defined the
temporal pattern discovery problem, and developed and evaluated three different temporal
pattern discovery algorithms, namely TP-Graph, TP-Itemset and TP-Sequence. Their relative
performances are reported.

Keywords: Process Mining, Knowledge Discovery, Data Mining, Temporal Patterns,
Association Rules, Sequential Patterns

January 2003

*: Corresponding author.
Tel: +886-7-5252-000 ext 4723; fax: +886-7-525-4799; e-mail: syhwang@mis.nsysu.edu.tw

1

1. Introduction

As organizations become more process conscious, management of processes and process data

with temporal context is gaining increased attention. For example, business process

reengineering, referring to the fundamental analysis and radical redesign of business processes

to achieve dramatic improvements in such critical measures of performance as cost, quality,

service and speed (Hammer and Champy, 1993), represents an important endeavor toward

business revolution in the last decade. On the other hand, workflow management aims at

improving process efficiency and customer satisfaction by automating and actively monitoring

process execution. To achieve these goals, the description of constituent activities, the

control/data flow, the potential participants of various activities, the organizational model and

reference data pertaining to a business process have to be specified precisely (WMC, 1994).

Business process reengineering and workflow management are directed toward systematic

analysis and management of organizational processes. Not surprisingly, even where processes

have been managed and monitored by organizations, exceptional executions often occur. The

importance of handling exceptions in the context of workflow management has been

recognized in the recent development of several research prototypes (e.g., EXOTICA (Alonso

et al., 1994), METEOR (Sheth and Kochut, 1997), ADOME (Chiu et al., 1999; Chiu et al.,

2001), ADEPT (Reichert and Dadam, 1998), WAMO (Eder and Liebhart, 1998), and WIDE

(Casati et al., 1999)). On the other hand, since the difficulty of defining a process model that

represents all properties of an underlying business process has been acknowledged (Davenport

1993), ad hoc processes frequently have been observed (Krishnakumar and Sheth, 1995; Tang

and Hwang, 1996). Process executions or instances, ad hoc or exceptional, are valuable to an

organization, since they not only record execution tracks but, more importantly, also embed

execution practices and heuristics. With the widespread diffusion of information systems in

organizations, large volumes of process data are continuously generated and collected, creating

2

an urgent need for new analysis techniques that can intelligently and automatically extract

implicit and potentially useful knowledge to support business decision making.

Most of the previous work in process mining (or called workflow mining or process discovery)

assumes the existence of an underlying process model that generates process instances. Thus,

given a set of process instances, the goal of process mining is to discover a process model that

best describes them. In contrast to the previous work, this work does not assume the existence

of such an underlying process model. Under such an assumption, it may not be practical to

discover a single process model from a set of process instances. Given a set of process

instances, we aim to discover knowledge of frequently occurring activities and respective

temporal relationships that exist within these process instances. Since the discovered

knowledge involves activities with temporal relationships, they are referred to as temporal

patterns in this study. The discovery of temporal patterns can be applied to various application

domains for supporting crucial business decisions. For example, to provide better patient care

and high quality health services, implementation of clinical pathways are desirable for health

care providers (Quigley et al., 1998). Evidently, design of a clinical pathway for a particular

diagnosis, procedure or symptom is a time-consuming and knowledge-intensive process. Thus,

use of clinical care logs for supporting design of clinical pathways represents a promising

approach (Lin et al., 2001). However, since clinical cares for patients with the same diagnosis,

procedure or symptom may vary with physicians’ practice preferences and styles, attempting to

discover from clinical care logs a universal clinical pathway for a particular diagnosis,

procedure or symptom may not be practical. Instead, it would be essential to discover from

clinical care logs the frequent (partial) clinical paths that become valuable inputs when design

a clinical pathway or a set of clinical pathways for a particular diagnosis, procedure or

symptom. In the context of project management, it is desirable to discover how plan patterns

that frequently result in desired plan executions differ from those that are frequently associated

3

to undesired executions. In the following, a real world application that applied our proposed

algorithms is depicted for illustration purpose.

Example

Health care has become a major focus of concern and even a political, social, and economic

issue in modern society. People rely on government-sponsored and -managed health insurance

systems (such as in Australia, France, and Taiwan), private health insurance systems, or both to

share the expensive health care costs. With such an intensive need for health insurances, health

care fraud and abuse become a serious problem. Of the various parties involved in the health

care fraud and abuse, medical institutes seem to be responsible for most of the damages.

Conceivably, an insurance claim is likely to be fraudulent if its constituent activities order

suspiciously. In this case, it is sensible to discover temporal patterns from normal and

fraudulent practices (as provided by experts) and subsequently identify those patterns that are

capable of distinguishing fraudulent practices from normal ones.

We gathered 2543 insurance claim instances about Pelvic Inflammatory Disease from regional

hospitals in Taiwan during July 2001 and June 2002. After removing instances that contain

missing or noisy data, we were left with 2011 cases, among which 906 instances were

identified by two physicians as fraudulent. We applied the temporal pattern mining algorithms

proposed in this study to identify a set of frequent temporal patterns. We then applied a

classification analysis technique (specifically, C4.5) for fraud/abuse detection by using the

discovered temporal patterns as predictive features. The resultant detection model was able to

achieve a detection accuracy of around 65%. �

Numerous data mining techniques have been proposed to extract implicit and potential useful

knowledge from large databases. Based on the types of knowledge to be discovered, data

4

mining techniques can be broadly classified into several categories, including classification

(Breiman et al., 1984; Quinlan, 1986; Rumelhart et al., 1986; Quinlan, 1993), clustering

(Anderberg, 1973; Kohonen, 1989; Kaufman and Rousseeuw, 1990; Ng and Han, 1994;

Kohonen, 1995), association rule (Agrawal et al., 1993; Agrawal and Srikant, 1994; Srikant

and Agrawal, 1997; Aggarwal and Yu, 2001), sequential pattern (Agrawal and Srikant, 1995;

Lesh et al., 2000; Srikant and Agrawal, 1996), data visualization (Keim and Kriegel, 1996), etc.

A review of existing data mining techniques suggests that little attention has been paid to the

discovery of temporal patterns. Thus, the current research was motivated by recognition of the

importance of mining temporal patterns from process data. Specifically, we formalized the

temporal pattern discovery problem and designed three algorithms that are based on the notions

of temporal graphs, temporal relationship sets, and quasi-sequences, respectively.

Subsequently, the performance and scalability of these algorithms were empirically evaluated

over a range of data characteristics using synthetic data sets.

The remainder of the paper is organized as follows. Section 2 reviews prior research work

related to this study. Section 3 formally defines concepts related to temporal pattern discovery.

The three temporal pattern discovery algorithms proposed are detailed in Section 4. Section 5

describes a model for generating synthetic data sets for performance evaluation and reports

evaluation results of applying the proposed algorithms over a range of data characteristics. The

paper is concluded in Section 6 with a summary and some future research directions.

2. Related Work

The work reported in (Agrawal et al., 1998; Datta, 1998; Aalst et al., 2002; Hwang and Yang,

2002) deals with the problem of discovering a process model from a set of process instances

and assumes the existence of a process model (i.e., control dependencies between activities)

underlying the given set of process instances. In this vein, such discovery, using a directed

5

graph (Agrawal et al., 1998; Hwang and Yang, 2002) , a finite state machine (Datta, 1998), or a

Petri-net (Aalst et al., 2002) for representing process instances, aims at discovering a process

model that best describes the set of process instances. This discovery problem has its origin in

identifying software development processes and has found its way into business process

construction (Datta, 1998). Our study significantly differs from the process model discovery in

that we do not assume the existence of an underlying process model. That is, our study is

designed to identify frequently observed temporal dependencies within process instances

rather than control dependencies that are presumably genuine in the process instances.

Our work is closest to sequential pattern discovery that discovers frequent sequential

occurrence of activities (e.g., items purchased or events) across transactions of the same entity

(e.g., customer or a user-specified time window). The sequential pattern discovery reported in

(Agrawal and Srikant, 1995; Srikant and Agrawal, 1996) finds the maximal sequences among

all sequences that have a certain user-specified minimum support. Each such maximal

sequence is referred to as a sequential pattern. Mannila et al. (1995) reported a technique for

finding frequent episodes from a given event sequence, where an episode is defined as a partial

order on a set of events. The given event sequence is first partitioned into a set of windows,

each of which is an event subsequence with time width equal to a user-specified interval. An

episode e is said to occur in a window w if all (partial) orders attained in e are present in w. The

goal of the episode discovery is to find the set of episodes that occur in a sufficient number of

windows. The concept of episodes was further generalized by taking into account attributes

associated with events (Mannila and Toivonen, 1996). The sequential pattern discovery

problem assumes that a transaction contains a set of activities occurring at the same time and

that transactions of the same entity are sequentially ordered, while the episode discovery

problem takes as input a sequence of events occurring at different times. In contrast, we assume

that an activity appears over a temporally extended interval, two activities may temporally

6

overlap or occur in sequence. Both sequential pattern discovery and episode discovery address

only one type of temporal relationships (i.e., the sequential order), while our work seeks to

identify patterns that are composed by both sequential and overlapping temporal relationships.

In addition, a structure discovery system called Subdue was proposed in (Cook and Holder,

2000; Gonzalez et al., 2000). Subdue is used to identify interesting and repetitive substructures

within structural data that can be aggregately represented as a graph. The substructure

discovery technique enumerates all possible subgraphs of the given graph and for each

subgraph, uses a graph match algorithm to identify all its occurrences. Priority is given to the

substructure that has smaller Minimum Description Length (MDL) (Rissanen, 1983). A MDL

of a subgraph is proportional to the summation of the length of the subgraph and the length of

the given graph compressed by the subgraph. In other words, an ideal subgraph is the one that

is not very large but is powerful in compressing the graph. Iteration of the substructure

discovery and replacement process constructs a hierarchical description of the structural data in

terms of the discovered substructures. Such a hierarchy provides varying levels of abstraction

for subsequent data analysis. By its nature, this technique identifies repetitive subgraphs from a

large graph, rather than a large set of graphs as assumed by our work. Besides, it discovers only

substructures that are regionally connected subgraphs and disregards transitive relationships

among objects, limiting its applicability to our temporal pattern discovery problem, where

transitivity in temporally sequential relationships prevails.

Finally, Bettini et al. (1998) deals with the discovery of frequent-event patterns in a time

sequence that consists of a set of time-stamped events. The discovery process starts with a

user-specified event structure that consists of a set of variables representing events and

temporal constraints between variables. Its goal is to identify instantiations of variables in the

event structure that appear frequently in the time sequence. The event pattern discovery differs

7

from our work in several ways. First, it assumes an event appears at a time point rather than

over a time interval. Second, it searches for instantiations of a user-specified event structure

within a time sequence rather than discovering all possible frequent temporal relationships

among events from a set of process instances.

3. Formalization of Temporal Pattern Discovery Problem

A process consists of a set of activities, each of which is an execution unit that leads to the

transition of state in the process. The execution of an activity spans a temporally extended

period. Each activity may also be associated with such information as execution entity(s)

involved, execution location and execution outcome. However, since the main intent of this

research is to discover frequent activities and their associated temporal dependencies, we

exploit only the starting time and ending time of an activity execution. Our view on a process

instance can be formally described as below.

Definition 1. A process instance P is a set of triplets (vi, st(vi), et(vi)), where vi uniquely

identifies an activity, and st(vi) and et(vi) are timestamps representing the starting time and

ending time of the execution of vi in P, respectively.

Given a process instance, the temporal relationship between any activity pair can be classified

into two types: followed and overlapped.

Definition 2. In a process instance P, an activity vi is followed by another activity vj if st(vj) ≥

et(vi).

Definition 3. In a process instance P, two activities, vi and vj, are overlapped if st(vj) ≤ st(vi) <

et(vj) or st(vi) ≤ st(vj) < et(vi).

Definition 4. An activity vi is directly followed by another activity vj in a process instance P if vi

is followed by vj and there does not exist a distinct activity vk in P such that vi is followed by vk

8

and vk is followed by vj.

To represent temporal relationships between activities in a process instance concisely, a

temporal graph is defined as follows.

Definition 5. The pertinent temporal graph of a process instance P is a directed acyclic graph

G = (V, E), where V is the set of activities in P, and E is a set of edges. Each edge in G is an

ordered pair (vi, vj), where vi, vj ∈ V, vi ≠ vj, and vi is directly followed by vj.

Transforming a process instance into its corresponding temporal graph representation is

straightforward. We first traverse the activities in the given process instance by the ascending

order of their starting times. For each activity v, the set F of activities that directly follow v are

identified. Subsequently, edges connecting v to each activity in F are created. As shown in

Figure 1(a), activity B will be processed first due to its earliest starting time among all activities

in the process. Activities C and D directly follow B; thus, two edges are created from B to C and

D, respectively, as shown in Figure 1(b). The subsequent traversal of this process instance

processes activities A, C, D, and E in sequence. The resulting temporal graph corresponding to

this process is graphically illustrated in Figure 1(b). From a given temporal graph G, it is

evident that an activity vi is followed by another activity vj if and only if there exists a path from

vi to vj in G, and vi and vj are overlapped otherwise. As shown in Figure 1(b), activity B is

followed by E since there exists a path from B to E. In contrast, activities A and B are

overlapped since there does not exist a path between them.

A temporal pattern can also be represented as a temporal graph that has a certain user-specified

minimum support and satisfies the maximality property.

Definition 6. A temporal graph G is said to be supported by a process instance P if all followed

and overlapped relationships that exist in G are present in P.

9

Definition 7. Given a set of process instances, a temporal graph G is said to be frequent if it is

supported by no less than s% of the process instances, where s% is a user-defined minimum

support threshold.

Definition 8. A temporal graph G=(V, E) is a temporal subgraph of another temporal graph

G’=(V’, E’) if V⊆V’ and for any pair of vertices v1, v2∈V, there is a path in G connecting v1 to v2

if and only if there is a path in G’ connecting v1 to v2. If G is a temporal subgraph of G’, then G’

is a temporal supergraph of G.

Definition 9. Given a set TGS of temporal graphs, a temporal graph G in TGS is maximal if G is

not a temporal subgraph of any other temporal graph in TGS.

Problem statement: Given a set of process instances, the temporal pattern discovery is to find

the maximal temporal graphs among all frequent temporal graphs. Each such temporal graph is

referred to as a temporal pattern.

4. Temporal Pattern Discovery Algorithms

In this section, three different algorithms, namely TP-Graph, TP-Itemset, and TP-Sequence,

are proposed for the described temporal pattern discovery problem. TP-Graph precedes its

discovery process directly based on the temporal graph representation. On the other hand,

TP-Itemset extends the Apriori algorithm (Agrawal and Srikant, 1994) for discovering

temporal patterns from a set of process instances, each of which is represented as a set of

temporal relationships. Finally, in the TP-Sequence algorithm, each process instance is

represented as a quasi-sequence where the overlapping and followed-by relationships in each

process instance are properly preserved. Accordingly, a sequential pattern discovery technique,

specifically the AprioriAll algorithm (Agrawal and Srikant, 1995), is extended to discover

temporal patterns from the set of quasi-sequences.

10

4.1 TP-Graph Algorithm

As with association rule (Agrawal and Srikant, 1994) and sequential pattern (Agrawal and

Srikant, 1995) algorithms, the TP-Graph algorithm exploits the downward closure property of

the support measure to improve the efficiency of searching for frequent temporal graphs. The

downward closure property suggests that if a temporal graph G has support of at least s%, any

temporal subgraph of G must have a support of at least s%. In other words, if a temporal graph

G has a support of less than s%, any temporal supergraph of G definitely will have support of

less than s%. Accordingly, we adopted an iterative procedure similar to that in the Apriori

(Agrawal and Srikant, 1994) and AprioriAll (Agrawal and Srikant, 1995) algorithms.

Specifically, potentially frequent temporal graphs (or called candidate temporal graph) of size

k are constructed by joining frequent temporal graphs of size k−1. The process instances are

then scanned to identify frequent temporal graphs of size k from the set of candidate temporal

graphs of the same size. The resultant frequent temporal graphs are then used to prune the

non-maximal frequent temporal graphs derived in the previous iteration (i.e., k−1). This

procedure is iteratively executed until no further frequent temporal graphs can be found. Let Ck

and Lk denote the set of candidate temporal graphs and the set of frequent temporal graphs of

size k, respectively. Each iteration k performs the following three steps whose challenges and

solutions are detailed in the following subsections, respectively.

1. If k=1, Ck is the set of all single-activity temporal graphs. Otherwise, Ck is generated by

joining in pair-wise the frequent temporal graphs of size k−1 (i.e., Lk-1).

2. Scan the process instances to determine Lk from Ck.

3. If k>1, prune from Lk-1 all non-maximal temporal graphs that are temporal subgraphs of

any temporal graph in Lk.

4.1.1 Joining Frequent Temporal Graphs

Intuitively, two frequent temporal graphs of size k−1 can be joined if they differ only in one

11

activity and contain the same temporal relationships for any pair of common activities.

However, this simple-minded joining process will result in many redundant candidate temporal

graphs. Consider the following example. Suppose the set of frequent temporal graphs in

iteration 2 be {A→B1, B→C, A→C}. Any pair in the set can be joined to form the candidate

temporal graph of A→B→C. That is, three identical candidate temporal graphs of size 3 will be

generated. In the following, a joining algorithm is proposed to eliminate or reduce such

redundancy.

Definition 10. Let G be a temporal graph and v be a vertex in G. The operation of subtracting v

from G, denoted as G−{v}, deletes v and its associated edges from G. In addition, transitive

edges via v are reconstructed by connecting each source vertex of incoming edges of v to each

destination vertex of outgoing edges of v.

This subtraction operation can be illustrated as follows. Figure 2(b)-(f) show all of the temporal

subgraphs resulted from subtracting a vertex from the temporal graph G shown in Figure 2(a).

When the vertex B is subtracted from G, edges A→C and A→D are reconstructed as shown in

Figure 2(b). As shown in Figure 2(c), the deletion of the vertex C from Figure 2(a) does not

introduce any new edge since C does not have any outgoing edge in G. Figure 2(d), (e), and (f)

illustrate the remaining temporal subgraphs derived from Figure 2(a) by deleting D, E, and A,

respectively.

Observation 1. Let s be a vertex without incoming edges (called a source vertex) and e be

another vertex without outgoing edges (called a sink vertex) in a temporal graph G. If G is

frequent, both G−{s} and G−{e} must be frequent.

1 This simplified representation differs from the temporal graph representation defined in Definition 5. Here,
A→B denotes a temporal graph consisting of activities A and B where A is directly followed by B.

12

Based on this observation, to determine whether two frequent temporal graphs can be joined,

only their source vertices and sink vertices need to be considered. Accordingly, we formally

define joinable temporal graphs as follows.

Definition 11. Two temporal graphs Gi and Gj are said to be joinable, if there exists a source

vertex s in Gi and a sink vertex e in Gj such that Gi−{s} = Gj−{e} and s ≠ e.

Consider the temporal graphs shown in Figure 3. Designating vertex B as a source activity of
G1 shown in Figure 3(a) and vertex D as a sink activity of G2 shown in Figure 3(b), these two
temporal graphs are joinable since G1−{B} = G2−{D}. The temporal graphs G1 and G3 or G2

and G3, however, are not joinable.

Given two joinable temporal graphs Gi (with s being a source vertex) and Gj (with e being a

sink vertex), the temporal relationship between any pair of activities (except that between s and

e) present in Gi or Gj will be preserved in a resulting candidate temporal graph. Since more than

one permissible temporal relationship between s and e may exist, the joining of two joinable

temporal graphs of size k–1 can lead to multiple candidate temporal graphs of size k. The

temporal relationship between s and e in a candidate temporal graph can be: 1) no edge exists

between s and e or 2) an edge connects s to e. Note that the case where an edge connects e to s

need not be considered, as it results in a temporal graph with s and e not being source and sink

vertices respectively. Formally, the join set of two joinable temporal graphs Gi (with s being the

source vertex) and Gj (with e being the sink vertex) is composed of

1. Gi ∪ Gj
2, and

2. Gi ∪ Gj ∪ {s→e} if there does not exist a path from s to e in Gi ∪ Gj.

Consider the two joinable temporal graphs G1 and G2 shown in Figure 3. The join set of G1

2 The union of two graphs Gi=(Vi, Ei) and Gj=(Vj, Ej) results in a new graph G=(Vi∪Vj, Ei∪Ej).

13

(with B being a source vertex) and G2 (with D being a sink vertex) includes two candidate

temporal graphs of size 4 as shown in Figure 4.

The previously described downward closure property can further be exploited to reduce the set

of resulting candidate temporal graphs. A candidate temporal graph G of size k will not be

frequent if any of its temporal subgraphs of size k−1 is not in Lk-1 and, hence, should be

eliminated from Ck. Such pruning process requires, for each candidate temporal graph of size k,

the derivation (using the subtraction operation defined in Definition 10) of all of its temporal

subgraphs of size k–1. The pseudo code of GenerateCandidateGraph() for generating a set of

candidate temporal graphs of size k from a set of frequent temporal graphs of size k−1 and that

of DeriveSubgraph() for deriving all temporal subgraphs of size |G|−1 for a temporal graph G

are listed below.

GenerateCandidateGraph(a set of frequent temporal graphs: TGS): a set of temporal graphs
{

CandidateSet = Ø;
For (each pair of graphs (Gi, Gj) in TGS) {

For (each source vertex s in Gi) {
For (each sink vertex e in Gj) {

If (s ≠ e and Gi−{s}= Gj−{e}) { /* joinable */
UG1 = Gi ∪ Gj; UG2 = Gi ∪ Gj ∪ {s→e};
CandidateSet = CandidateSet ∪ {UG1};
If there exists no path from s to e in UG1
Then CandidateSet = CandidateSet ∪ {UG2};

 } /* end-if */
} /* end-for */

} /* end-for */
} /* end-for */
For (each graph G in CandidateSet) {

If DeriveSubgraph(G) ∩ TGS ≠ DeriveSubgraph(G)
Then CandidateSet = CandidateSet – {G};

} /* end-for */
Return CandidateSet;

}

DeriveSubgraph(a temporal graph: G): a set of temporal graphs
{

14

Subgraph = Ø;
For (each vertex v in G) {

Source = the set of vertices incident to v;
Sink = the set of vertices incident from v;
SG = G – {v};
For (each vertex pair (vs, vd) where vs ∈ Source and vd ∈ Sink) {

If there does not exist a path between vs and vd in SG then SG = SG ∪{vs→vd};
} /* end-for */
Subgraph = Subgraph ∪ {SG};

}
Return Subgraph;

}

4.1.2 Scanning Process Instances

To find frequent temporal graphs from a set of candidate temporal graphs, we have to compute

their support by scanning the set of process instances. To efficiently decide the set of candidate

temporal graphs that a given process instance supports, we adopted the hash-tree data structure

proposed by Agrawal and Srikant (1994 and 1995). Use of the hash-tree to store candidate

temporal graphs of the same size requires a total order on the vertices in each temporal graph.

In this study, the vertices of each temporal graph are sorted based on its graph topology. A

topological sort of graph G is a linear ordering of all its vertices such that if G contains an edge

(u, v), then u appears before v in the ordering (Cormen et al., 1989). To ensure a unique

topological sort for a given temporal graph, the lexicographic order is applied to vertices that

are temporally overlapped. The resulting order is called the temporal sequence of a temporal

graph. For instance, the temporal sequence of the temporal graph shown in Figure 4(a) is <A, B,

C, D>.

A node in the hash-tree either contains a set of temporal graphs (a leaf node) or a hash table (an

interior node). Each bucket in the hash table of an interior node points to a child node. To insert

a candidate temporal graph G, we start from the root and follow appropriate pointers until a leaf

node is reached. At an interior node at depth d (assuming the depth of the root node of the

15

hash-tree be 1 and that of a child node of an interior node at depth d be d+1), we decide which

branch to follow by applying a hash function to the d-th vertex in the temporal sequence of G.

Initially, the root node is a leaf node. When a leaf node L at depth d overflows (i.e., the number

of temporal graphs in the leaf node exceeds a specified threshold), L is converted to an interior

node and several leaf nodes are created as the child nodes of L. Subsequently, the temporal

graphs originally stored in L are distributed to these leaf nodes by applying the hashing

function to the d-th vertices in their temporal sequences.

Such a hash-tree, once constructed, can be used to determine the subset of candidate temporal

graphs that is supported by a given process instance P by traversing the hash-tree. Let S denote

the temporal sequence of P. The traversal starts at the root node by applying the hashing

function on every vertex in S to determine the set of nodes at depth 2 to visit. At an interior

node to which a vertex a in S has just hashed, the hashing function is then applied to each vertex

after a in S. The traversal process continues until leaf nodes are reached. At each leaf node

reached, the candidate temporal graphs in the leaf supported by P are identified and their

support counts are incremented by one. After scanning all the process instances, the candidate

temporal graphs whose support exceeds the user specified minimum threshold form the set of

frequent temporal graphs of this iteration.

Consider a segment of hash-tree for candidate temporal graphs of size 3 as shown in Figure
5(b). By hashing on every vertex in the temporal sequence <B, C, E, D> of the process instance
P shown in Figure 5(a), we examine those nodes that start with B, C, E, or D, respectively. In
this case, the nodes 3 and 4 will be visited next. At node 3 in the hash-tree shown in Figure 5(b),
we can only hash on vertex C, E and D since we have reached node 3 by previously hashing on
vertex B. As a result, node 7 will then be visited. On the other hand, since node 4 is a leaf node,
whether its candidate temporal graph (i.e., G6) is supported by P is then examined. Similarly,
the temporal graphs (i.e., G4 and G5) in node 7 will be examined against P and the support of G4

is incremented by 1 since it is supported by P.

16

The pseudo code for inserting a candidate temporal graph into a hash-tree, named

AddOneGraph(), and that for traversing the hash-tree for a given process instance, named

Traverse(), are listed below. Note that Traverse() is a recursive function that takes three

parameters, namely the current node C of the hash-tree, the target process instance P, and the

position of the vertex in P that previously hashed to C. Initially, we call Traverse(root of the

hash-tree, P, 0).

AddOneGraph(a hash-tree: T, a temporal graph: G with temporal sequence <v1, v2, …, vn>)
{

C = root of T; Level = 1; /* initialize */
While C is not a leaf node of T do {

C= C.Hash(vLevel);
Level++;

}
Insert G into C;
If C is full
{

Create a hash table H with each entry pointing to a new leaf node;
For each temporal graph R in C
{

Assign R to a leaf node by hashing on the Level’th vertex of R’s temporal sequence;
} /* end-for */
Assign the hash table H to C;

 } /* end-if */
}

Traverse(a node pointer: C, a process instance: P with temporal sequence <v1, v2, …, vn>,
previous position: s)
{

If (C is a leaf node) {
For (each temporal graph G in C) {

If G is supported by P then G.count++;
} /* end-for */

}
else {

position = s;
Do {

NewC = C.Hash(vposition);
Traverse(NewC, P, position+1);
position++;

} While (position ≤ n);
} /* end-if */

}

17

Theorem 1 shows that this traversal procedure indeed returns the desired result.

Lemma 1. For each candidate temporal graph G supported by a process instance P, the

temporal sequence of G must be a subsequence3 of the temporal sequence of P.

Proof: Let SG = <v1, v2, …, vk> and SP be the temporal sequences of G and P, respectively. For

any pair of vertices vi and vj in SG where i < j, there are two possibilities on their temporal

relationships: vi is followed by vj in G, and vi and vj are overlapped but vi precedes vj

lexicographically. Since P supports G, it is clear that in either case the same relationship holds

between vi and vj in P. Therefore, vi appears before vj in SP. �

Theorem 1. For a given process instance P, the traversal of the hash-tree examines every

candidate temporal graph supported by P.

Proof: It is obvious that the traversal of the hash-tree for P exhausts all the subsequences of the

temporal sequence of P. According to Lemma 1, these nodes include all the candidate temporal

graphs supported by P. �

Use of a hash-tree at iteration k can not only facilitate fast counting the support of candidate

temporal graphs of size k but also improve efficiency of constructing the set of candidate

temporal graphs of size k+1. Considering the hash-tree for candidate temporal graphs of size 3

shown in Figure 5, suppose that the temporal graph G1 (i.e., A→B→C) has been found to be

frequent. To find temporal graphs that are joinable with G1, we need only to visit those leaf

nodes that are reachable by hashing on B followed by C (assuming A is selected as the source

vertex in G1). In this case, both temporal graphs contained in the node 7 (i.e., G4 and G5) are

joinable with G1. This search process of which correctness is ensured by Theorem 2 greatly

18

reduces the overhead required to establish joinable temporal graphs for a given temporal graph.

Theorem 2. Let G be a frequent temporal graph with the temporal sequence being <v1, v2, …,

vk>. There must exist two joinable frequent temporal subgraphs G1 and G2 with temporal

sequences being <v1, v2, …, vk-1> and <v2, v3, …, vk> respectively. In addition, the join set of G1

and G2 includes G.

Proof: It is obvious from Observation 1 that subtracting vk from G results in a frequent

temporal subgraph G1 with the temporal sequence being <v1, v2, …, vk-1> and that subtracting v1

from G results in a frequent temporal subgraph G2 with a temporal sequence <v2, v3, …, vk>.

Besides, since G2−{vk} = G1−{v1}, G1 and G2 are joinable, and their join set includes G. �

4.1.3 Pruning Non-maximal Temporal Graphs

Apparently, if a temporal graph G is frequent, all of its temporal subgraphs also are frequent.

According to Definition 9, the temporal subgraphs of G are not maximal and should be pruned

since they reveal less information on frequent activities and temporal relationships than G. To

retain only maximal temporal graphs, PruneSubgraph() is invoked at each iteration to

eliminate any non-maximal temporal graphs obtained at the previous iteration.

/* TGSn is the set of frequent temporal subgraphs obtained at iteration n */
PruneSubgraph(a set of graphs: TGSn-1, a set of graphs: TGSn): a set of temporal graphs
{

For (each graph G in TGSn) {
SG = DeriveSubgraph(G)4;
TGSn-1 = TGSn-1 − SG;

} /* end-for */
Return TGSn-1;

3 A sequence X = <x1, x2, …, xm> is a subsequence of another sequence Y = <y1, y2, …, yn> if there exists a strictly
increasing sequence <i1, i2, …, im> of indices of Y such that for all j = 1, 2, …, m, we have xj = yij (Cormen et al.,
1989).
4 For ease of illustration, PruneSubgraph(TGSn-1, TGSn) invokes DeriveSubgraph(G) to determine all the
temporal subgraphs of G by dropping a vertex in G. However, by maintaining an appropriate data structure that
keeps the links between a temporal graph and its subgraphs when generating candidate temporal graphs,
DeriveSubgraph() need not be invoked and this step can efficiently be performed.

19

}

4.2 TP-Itemset Algorithm

TP-Itemset extends the Apriori algorithm (Agrawal and Srikant, 1994) for discovering

temporal patterns from a set of process instances. In TP-Itemset, each possible temporal

relationship in a process instance P is explicitly represented as an item in the itemset for P.

Each item in an itemset is of the form vi→vj if the activity vi is followed by vj or vi~vj if the

durations of activities vi and vj are temporally overlapped (where ~ denotes an overlapping

relationship and vi < vj in their lexicographical order). For example, as shown in Figure 6, the

process instance 1 is represented as {A~B, A→C, B→C}, while the process instance 2 is

represented as {A~B, A→C, B~C}. With this representation, n(n-1)/2 items are required to

represent a process instance possessing n activities.

As with the association rule discovery technique, an itemset that has certain user-specified

minimum support is called a large itemset, while a potentially large itemset is called a

candidate itemset. The TP-Itemset algorithm is similar to the Apriori algorithm but with

several distinctions. First, unlike in the Apriori algorithm where resulting large itemsets are

unrestricted, a large itemset generated by the TP-Itemset algorithm needs to satisfy additional

constraints. Let VI = {v1, v2, …, vk} be the set of distinct activities involved in an itemset I. An

itemset I is referred to as a full itemset if the temporal relationship between any pair of

activities, vi and vj where vi ∈ VI, vj ∈ VI, and vi ≠ vj, exists in I. Otherwise, I is a partial itemset

due to the absence of some temporal relationships in I. In effect, each full and large itemset

corresponds to a frequent temporal graph defined in Definition 7. For instance, {A~B, A→C,

B→C} is a full itemset, while {A~B, A→C} is a partial itemset since the relationship between

activities B and C is unspecified. Hence, large itemsets generated by the TP-Itemset algorithm

are required to be full itemsets. Second, the set of large itemsets generated by the Apriori

20

algorithm need not retain only the maximal itemsets each of which is not a subset of any other

large itemsets. However, since temporal pattern discovery is interested only in finding the

maximal temporal patterns among all frequent temporal patterns, pruning non-maximal

itemsets is deemed necessary.

Given a set of process instances, the TP-Itemset algorithm transforms them into a set of full

itemsets and generates the maximal itemsets among all full and large itemsets. Each such

maximal, full and large itemset represents a temporal pattern. Let Lk be a set of large k-itemsets

each of which has k items (i.e., k temporal relationships) and Ck be a set of candidate k-itemsets,

where Ck can be constructed by joining large itemsets in Lk–1. In the Apriori algorithm, the

joining procedure requires that items within an itemset be kept in their lexicographic order. In

this study, since each item (vi→vj or vi~ vj) involves two activities, the lexicographical order of

a set of items is based on their first activities (i.e., vi) and then on their second ones (i.e., vj).

Moreover, the partial itemsets from Lk–1 should not be removed immediately at each iteration

k–1, since two partial (k–1)-itemsets may result in a full itemset in Ck. For instance, joining two

partial, large itemsets in L2, {A→B, A→C} and {A→C, B~C}, results in a full itemset {A→B,

A→C, B~C}. Finally, to facilitate fast counting the support for the candidate itemsets in Ck,

candidate itemsets are stored in a hash-tree as employed by the Apriori algorithm (Agrawal and

Srikant, 1994). Accordingly, the TP-Itemset algorithm for discovering temporal patterns is

listed below.

TP-Itemset(a set of process instances: P, the minimum support: minsup): a set of large, full and
maximal itemsets
{

Transform each process instance p ∈ P into a process itemset i in I;
L1 = {large 1-itemsets};
MaxK= 1;
For (k = 2; Lk-1≠Ø; k++)
{

 Generates candidate itemsets Ck from Lk-1;

21

 For each process itemset i ∈ I
 {
 Ct = subset5(Ck, i); /* find candidate itemsets that are supported by i */
 For each candidate c ∈ Ct do c.count++;

 } /* end-for */
 Lk = {c ∈ Ck | c.count ≥ minsup};
 If (Lk ≠ Ø) then MaxK = MaxK+1;

} /* end-for */
For (k=MaxK; k>1; k--)
{

 Prunes partial itemsets in Lk;
For each itemset s in Lk
{

Prunes all sub-itemsets of s from Lk-1, Lk-2, …, L1;
 } /* end-for */

} /* end-for */
Return ∪k≥1Lk;

}

4.3 TP-Sequence Algorithm

TP-Sequence is based on the sequential pattern discovery technique (specifically, the

AprioriAll algorithm) to discover temporal patterns from a set of process instances. In the

TP-Sequence algorithm, the overlapped and followed relationships in each process instance are

explicitly represented as a sequence, where an itemset is a non-empty set of overlapping

activities, and a sequence is an ordered list of itemsets. The itemset {x, y} denotes that activities

x and y are temporally overlapped. A sequence with an ordered list of k itemsets is called a

k-sequence. For instance, a 2-sequence <{x}{y}> denotes that the activity x is followed by y.

Furthermore, a 2-sequence <{x, y}{y, z}> denotes that activity x is followed by z, while y

overlaps with x and z. As shown in Figure 6, the process instance 1 is represented as a sequence

of <{A, B}{C}>, while the process instance 2 is represented as <{A, B}{B, C}>. Using this

representation, a process instance is represented as an m-sequence where l ≤ m ≤ k, l is the

5 Using the hash-tree constructed for Ck, the subset(Ck, i) function is to find all the candidate itemsets in Ck that are
supported by the itemset i. We employed and implemented the subset function as proposed in (Agrawal and
Srikant, 1995).
7 In pass 2 and 3, the difference on the number of candidates between TP-Graph and TP-Sequence was less than
0.02%, while at pass 11, TP-Sequence generated about 10% more candidates than TP-Graph did.

22

number of activities in the longest path in the respective temporal graph, and k is the number of

activities in the process instance.

In the traditional sequential pattern discovery, no specific constraint is imposed on itemsets in a

sequence. However, since a sequence in the TP-Sequence algorithm is used to represent both

the followed and overlapped relationships, a meaningful sequence needs to satisfy certain

constraints. We call a sequence <{x}{x, y}> a non-canonical sequence since it is identical to

<{x, y}>. We say a sequence <{x, y} {y, z} {x, z}> is an illegitimate sequence since x appears

over discontinuous intervals. Furthermore, an illegitimate sequence such as <{x, y} {w} {x, z}>

even exhibits contradictory temporal relationships as both “x followed by w” and “w followed

by x” exist; thus, violating the irreflexivity of followed relationships. Hence, for discovering

temporal patterns, the AprioriAll algorithm needs to be extended to ensure that any candidate

sequence generated be canonical and legitimate. Let ai be an itemset. Canonical and legitimate

sequences are formally defined as follows.

Definition 12. A sequence s = <a1 a2 … am> is canonical if for each itemset aj, 1≤ j < m, aj ⊄

aj+1 and aj+1⊄ aj.

Definition 13. A sequence s = <a1 a2 … am> is legitimate if for each item x involved in s, the

itemsets that contain x form a continuous subsequence in s.

To distinguish an unconstrained sequence from a sequence with canonicity and legitimacy

properties (as required by the TP-Sequence algorithm), the latter is called a quasi-sequence.

The transformation of a process instance P into its respective quasi-sequence proceeds in the

following iterative manner. The quasi-sequence is initialized as an empty list. We traverse the

starting and ending times of activities in P in ascending order. The set O of overlapped

activities starts to accumulate when the first starting time is visited. When the first ending time

is encountered, the set O is appended to the quasi-sequence. Subsequently, we continue the

23

traversal until the next starting time (assuming its respective activity be v) is visited. At this

moment, the subset of activities in O whose ending times appear before the starting time of v

are removed from O since this subset of activities that have appeared in the quasi-sequence are

followed by v. This traversal procedure continues until all the timestamps are visited. Let us

illustrate this transformation using the process instance shown in Figure 7(a). As shown, when

the first ending time (which belongs to A) is visited, O={A, B} and, thus, the current

quasi-sequence is <{A, B}>. Since only A’s ending time appears before the next starting time

(that pertains to C), only A is removed from O. When the next ending time (that pertains to B) is

visited, O={B, C, D} and, therefore, the quasi-sequence becomes <{A, B}{B, C, D}>. When

the following starting time (that is possessed by E) is visited, O becomes empty because the

ending times of B, C, and D have all been traversed. When the last ending time (which belongs

to E) is visited, O={E}, and the resultant quasi-sequence is <{A, B}{B, C, D}{E}> as shown in

Figure 7(b). The pseudo-code of the described transformation is listed in the following.

Generate-Quasi-Sequence(a process instance: P): a quasi-sequence
{
 Quasi-Seq = <>; /* Initialization of a quasi-sequence */
 Sort the timestamps of activities in P and place them in a queue time;
 O = Ø;
 While time ≠ null {

if time.event = ‘starting time’ {
add time.activity to O;
time = time.next;

 }
else {/* time.event = ‘ending time’ */
 Append O to Quasi-Seq;
 While (time ≠ null) and (time.event = ‘ending time’) {
 O = O − time.activity;
 time = time.next;
 } /* end-while */
} /* end-if */

 } /*end-while */
 Return Quasi-Seq;
}

In a quasi-sequence, when an activity v appears in two consecutive itemsets Ij and Ij+1, v is

24

temporally overlapped with the remaining activities in Ij and Ij+1, rather than v in Ij taking place

before the activities in Ij+1 and v in Ij+1 occurring after the activities in Ij. This unique

interpretation requires re-definition of the subsequence relationship used by the sequential

pattern discovery algorithm. Using the example shown in Figure 7, the process instance is

represented as a 3-quasi-sequence <{A, B}{B, C, D}{E}>. In the sequential pattern discovery,

the sequence <{B}{C}> is considered to be supported by (or a subsequence of) <{A, B}{B, C,

D}{E}>. However, the quasi-sequence <{B}{C}> indeed denotes a followed relationship

between B and C, which differs from an overlapped relationship in the process instance under

discussion. Thus, the quasi-sequence <{B}{C}> is not supported by <{A, B}{B, C, D}{E}> in

the temporal pattern discovery. The re-defined subsequence relationship (formally defined in

Definition 14) is needed when determining support for candidate quasi-sequences as well as

pruning non-maximal quasi-sequences.

Definition 14. A quasi-sequence s = <a1 a2 … an> is supported by (or called a subsequence of)

another quasi-sequence t = <b1 b2 … bm>, if there exists integers i1 < i2 < … < in such that a1 ⊆

bi1, a2 ⊆ bi2, …, an ⊆ bin, and there exist no consecutive itemsets aj and aj+1 in s such that v ∈ aj,

u ∈ aj+1, and the itemset {u, v} ⊆ bij or {u, v} ⊆ bij+1.

Accordingly, the TP-Sequence algorithm, extending the AprioriAll algorithm, finds the

maximal quasi-sequences among all frequent quasi-sequences. Each such quasi-sequence

corresponds to a temporal pattern. The TP-Sequence algorithm employs the same hash-tree

data structure as the AprioriAll algorithm for storing candidate quasi-sequences in Ck and fast

counting their support (Agrawal and Srikant, 1995). The pseudo-code for the proposed

TP-Sequence algorithm is listed as follows.

25

TP-Sequence (a set of process instances: TPS, the minimum support: minsup): a set of large
quasi-sequences
{
 QSS = Ø; /* QSS contains a set of quasi-sequences for process instances */
 For each process instance P in TPS

{
QSS = QSS ∪ Generate-Quasi-Sequence(P);

 } /* end-for */
L1 = {large 1-quasi-sequences};
For (k = 2; Lk-1 ≠ Ø; k++)
{

 Ck = candidate sequences generated from Lk-1;
 Delete non-canonical and illegitimate sequences in Ck;

 For each quasi-sequence qs in QSS
 {
 Increment the count of all candidates in Ck that are supported by qs;
 } /* end-for */

 Lk = {c ∈ Ck | c.count ≥ minsup};
For each quasi-sequence s in Lk do
{

Delete all sub-sequences of s from Lk-1;
 } /* end-for */

} /*end-for */
Return ∪k≥1Lk;

}

5. Performance Evaluation

In this section, we evaluate the performance and scale-up properties of the three proposed

algorithms for finding temporal patterns. The experiments were conducted on an IBM

compatible PC with a CPU clock rate of 500 MHz and 128 MB of main memory, running

FreeBSD 4.1. Since we intend to examine the performance and scalability of the proposed

algorithms over a wide range of data characteristics, finding real-world data sets for our

evaluation would have been extremely difficult, if not impossible. Thus, synthetic data sets

were generated and employed for the evaluation.

5.1 Generation of Synthetic Data

To generate synthetic data set consisting of process instances, we adopted and extended the

transaction generation model proposed in (Agrawal and Srikant, 1994; Agrawal and Srikant,

26

1995; Srikant and Agrawal, 1996) for evaluating the Apriori and AprioriAll algorithms. In our

model of process executions, process instances are not randomly designed but tend to contain

sets of temporally related activities, each of which is a potential temporal pattern. Furthermore,

process instances are generated based on these potential temporal patterns. However, a process

instance might include only a subset of activities from a potential temporal pattern.

Given a set A of available activities with size N, we first generate a pool of potential temporal

patterns. The number of such patterns generated is set to PN. A potential temporal pattern P is

generated by first determining its size (i.e., the number of activities) from a Poisson distribution

with mean equal to PS. Activities in the first potential temporal pattern are chosen randomly.

To model the phenomenon where temporal patterns may involve common activities, some

percentage of activities in P, determined by an exponentially distributed random variable with

mean equal to the correlation ratio (CR), are randomly chosen from the potential temporal

pattern Q generated immediately prior to P. Subsequently, the remaining activities in P are

selected randomly without repetition from the rest of activities in A (i.e., excluding all activities

in Q). In addition, to determine temporal relationships among those activities in P, some

fraction of activities are chosen and arranged in sequence; thus exhibiting followed

relationships. We use an exponentially distributed random variable with mean equal to the

length ratio LR, defined as the maximal number of sequential activities to the total number of

activities, to decide this fraction for each pattern. Furthermore, without loss of generality, we

assume the execution duration of each such sequential activity in P be identical. For each

remaining activity in P, its execution interval ei, bounded by the earliest starting time and the

latest ending time of the sequential activities decided previously, is randomly determined, thus

creating overlapped relationships. However, ei should not reside in the time gap between any

two consecutive sequential activities in order to preserve the pre-decided length ratio for P.

27

After the generation of the set of potential temporal patterns, each pattern is assigned a weight,

which corresponds to its probability of being selected when generating a process instance. The

weight is initially picked from an exponential distribution with unit mean and then normalized

so that the sum of the weights for all of the patterns is 1. Finally, a set of process instances is

generated. The size of a process instance is picked from a Poisson distribution with mean equal

to IS. For each process instance, one of the potential temporal patterns is randomly chosen by

tossing a PN-sided weighted coin, where the weight for a side is the probability of picking the

associated pattern. If the size of the chosen pattern is not the same as that of the instance,

surplus activities are randomly dropped or additional activities are randomly added in an

overlapped manner.

The parameters and their respective default values used for the generation of synthetic data sets

are summarized in Table 1. Depending on the type of experiments conducted, the respective

parameter will be examined over a range of values, while the rest of parameters adopt their

default values. For each particular experiment, 10 trials were performed and the overall

performance was then estimated by averaging the performance across all trials.

5.2 Effects of Minimum Support Thresholds

Ten synthetic data sets were generated using the default values for all parameters as depicted in

Table 1. We investigated the effects of minimum support thresholds, ranging from 2% to 10%

at increments of 2%, on the execution times of each proposed algorithm. Figure 8(a) shows the

execution times of the three proposed algorithms as a function of minimum support. As

expected, the execution times of the three algorithms decreased as the minimum support

increased. Over the range of minimum supports investigated, a decrease in minimum support

appeared to have shown marginal effects on the execution times of TP-Graph and TP-Sequence.

On the other hand, a decrease in minimum support resulted in a noticeable increase in the

28

execution times of TP-Itemset. Across the range of minimum supports examined, TP-Graph

appeared to have exhibited the best performance, while TP-Itemset performed worst, mainly

because it generated and counted a much larger number of candidates than the other two

algorithms. As shown in Figure 8(b), when the minimum support was 2%, the number of

candidates generated and the number of iterations (i.e., passes) taken by TP-Itemset were

significantly higher than those produced/required by its counterparts. Such dramatic

differences could be attributed to their underlying structures for representing and manipulating

process instances and candidates. TP-Itemset explicitly represents each temporal relationship

(followed or overlapped) as an item in an itemset and generates candidates at the temporal

relationship level. Thus, the size of C1 (i.e., containing all possible relationships between pairs

of activities) considered by TP-Itemset is 3n(n–1)/2, where n is the number of activities,

leading to even larger candidate sets in the first few passes. TP-Graph and TP-Sequence form a

candidate temporal graph and a candidate quasi-sequence, respectively, by adding an

additional activity from the previous iteration. Hence, the number of activities considered in

pass 1 by either algorithm is n, which is far fewer than those generated by the TP-Itemset when

n is large. On the other hand, assuming the maximal number of activities in the temporal

patterns to discover to be s, the number of passes required by TP-Graph and TP-Sequence is at

most s+1. However, the number of passes for generating and counting candidate itemsets

would be s(s–1)/2 or higher. The larger candidate sets and higher number of passes considered

by TP-Itemset resulted in its inferior performance. TP-Graph and TP-Sequence, which

similarly represent and manipulate process instances and candidates, generated similar

numbers of candidates at all iterations7 and required the same number of passes for the target

temporal pattern discovery, leading to superior performances measured by execution time.

However, a more concise representation of process instances and temporal patterns employed

in TP-Graph appeared to contribute to its better performance (about 20% faster) than

TP-Sequence.

29

5.3 Effects of Process Characteristics

The performances of the three temporal pattern discovery algorithms were evaluated over a

range of process characteristics described by the size of potential temporal patterns (PS),

correlation ratio (CR), length ratio (LR), and number of activities (N) available for generating

potential temporal patterns and process instances. We did not examine the effects of number of

potential temporal patterns (PN) since varying the value of PN is similar to adjusting the

minimum support threshold for a given value of PN.

Synthetic data sets were generated for various sizes of potential temporal patterns, ranging

from 5 to 20 at increments of 5. Remaining parameters received their default values, as defined

in Table 1. The minimum support was set to 2%. Figure 9(a) shows the execution times of the

three temporal pattern algorithms as functions of the size of potential temporal patterns. The

performance of the three algorithms remained largely stable across the sizes of potential

temporal patterns examined. The resulting execution times of TP-Graph, while slightly lower

than those of TP-Sequence, were significantly lower than those required by TP-Itemset.

Various correlation ratios, ranging from 0.1 to 0.9 at increments of 0.1 were also investigated.

At a minimum support of 2%, a steady performance was achieved by all of the proposed

algorithms across all correlation ratios examined, as shown in Figure 9(b). As with the previous

experiment, TP-Graph was relatively comparable to TP-Sequence and outperformed

TP-Itemset.

In addition, we investigated the effects of length ratios, ranging from 0.1 to 0.9 at increments of

0.1, on the performance of the three algorithms. As shown in Figure 9(c), at a minimum support

of 2%, the execution times of TP-Graph and TP-Itemset remained stable across different levels

of length ratio examined. However, the execution times attained by TP-Sequence increased as

30

length ratio grew from 0.1 to 0.9. A larger length ratio represents a scenario in which potential

temporal patterns and their respected process instances were more likely to contain sequential

activities; thus requiring a longer quasi-sequence for representing each process instance. As a

result, as length ratio increased, the total size of itemsets involved in a quasi-sequence of a

process instance or a temporal pattern increased and the performance of TP-Sequence degraded.

Conversely, given the same set of activities appearing in a process instance, an increase in its

length ratio did not increase the size of the resulting temporal graph or itemset. Thus, length

ratio appeared to have no effect on the execution times of TP-Graph and TP-Itemset. Overall,

TP-Graph was the most efficient algorithm, followed by TP-Sequence and finally TP-Itemset.

Finally, the effects of the numbers of activities (ranging from 400 to 1600 at increments of 200)

available for generating potential temporal patterns and the process instances on the

performance of the three algorithms were examined. The minimum support was again set to

2%. As shown in Figure 9(d), the performance of the three algorithms remained largely stable

across different numbers of activities examined. The execution times needed by TP-Graph,

largely comparable to those by TP-Sequence, were significantly lower than those attained by

TP-Itemset.

5.4 Scale-up Experiments

The scalability experiments in this study were designed from two different perspectives: (1) by

increasing the average size of process instances (IS) while keeping the number of process

instances constant and (2) by increasing the number of process instances (D) while keeping the

average size of process instances constant. The first scale-up experiment increased the average

size of process instances, ranging from 10 to 60 at increments of 10. The remaining parameters

received their default values as depicted in Table 1. Figure 10(a) shows the execution times

required by TP-Graph, TP-Itemset and TP-Sequence, respectively, at a minimum support of

31

2%. We did not plot the execution times for TP-Itemset when the size of process instances was

greater than 40, since TP-Itemset generated too many candidates and ran out of memory. When

the size of process instances increased from 10 to 40, the execution time of TP-Itemset

increased proportionally. However, the execution times of TP-Graph appeared to scale fairly

quadratically across the range of sizes of process instances examined. Because each process

instance is represented as a graph that requires quadratic manipulation, the execution time

increases toward a quadratic trend as the size of process instances expands linearly. On the

other hand, the execution times of TP-Sequence appeared to increase with the number of

instances at a slower pace. Such a near-linear performance with respect to the size of process

instances can be attributed to the linear manipulation of sequences of itemsets. When the size

of process instances was below 30, TP-Graph was the most efficient algorithm. However, as

the size of process instances exceeded 30, TP-Sequence exhibited better performance.

The second scale-up experiment varied the number of process instances (D), ranging from

10,000 to 50,000 at increments of 10,000, while adopting their default values for the remaining

parameters. Figure 10(b) shows the performances of the proposed algorithms as a function of

the number of process instances, at a minimum support of 2%. As shown, all of the proposed

algorithms grew almost linearly with the number of process instances. The increasing rate for

TP-Graph appeared to be the smallest, while TP-Itemset exhibited the worst performance and

scalability with respect to the number of process instances.

6. Conclusions and Future Research Directions

As huge volumes of process data with temporal context are collected by and maintained in

organizations, discovering within these data frequently occurring activities and their respective

temporal relationships (referred to as temporal patterns in this study) is essential to establishing

a foundation for reengineering a business process and managing workflow evolution and

32

exceptions. The discovery of temporal patterns can also be applied to various application

domains (e.g., healthcare and project management) for crucial business decision support.

Motivated by the importance of and need for discovering such temporal patterns from process

data, we formally defined the temporal pattern discovery problem, and developed and

evaluated three different temporal pattern discovery algorithms, namely TP-Graph, TP-Itemset

and TP-Sequence, for finding a set of temporal patterns from process instances.

Using synthetic data sets, we analyzed the performance, over a range of data characteristics,

and scale-up properties of the three proposed algorithms. The experimental results showed that

the size of potential temporal patterns, correlation ratio, length ratio and the number of

available activities had no, or at most marginal, effects on the execution times of the proposed

algorithms. Overall, TP-Graph appeared to achieve the best performance. Due to its

representation and manipulation that treat each temporal relationship in a process instance as

an individual item, TP-Itemset exhibited the worst performance. In terms of scale-up properties,

the experimental results suggested that the execution times of TP-Sequence and TP-Itemset

grew linearly as the size of process instances expanded linearly, while those of TP-Graph

increased toward a quadratic growth. The experimental results also suggested that the three

proposed algorithms scaled linearly with the number of process instances, with the TP-Graph

algorithm achieving the best scalability.

Some ongoing and future directions along this line of research are summarized as follows. The

described process mining problem concentrates on finding temporal patterns among activities;

thus, only their respective temporal relationships in process instances were considered.

However, activities in a process instance are often described by such properties as execution

entity(s) involved, execution location, and execution outcome. Hence, the process mining

problem and the proposed algorithms can be extended for discovering temporal patterns at the

33

activity property level. From the theoretical viewpoint, the proposed techniques can be

generalized and extended beyond the temporal context by considering other types of

relationships (e.g., spatial or structural relationships). Such extension can be applied to a

broader spectrum of application domains. From the practical viewpoint, applying the proposed

techniques to support of workflow evolutions and exceptions, and other business decisions

represents interesting and desirable directions for future research.

Acknowledgements

This work was supported by National Science Council of the Republic of China under the grant

NSC-89-2416-H-110-037 and NSC-90-2213-E-110-022.

References

Aalst, W., A.Weijters and L. Maruster, 2002, Workflow Mining: Which Processes can be
Rediscovered? BETA Working Paper Series, WP 74, (Eindhoven University of
Technology, Eindhoven).

Aggarwal, C.C. and P.S. Yu, 2001, Mining Associations with the Collective Strength Approach,
IEEE Transactions on Knowledge and Data Engineering, Vol. 13, No. 6,
pp.863-873.

Agrawal, R., T. Imielinski and A. Swarmi, 1993, Mining Association Rules Between Sets of
Items in Large Databases, Proceedings of the ACM SIGMOD International
Conference on Management of Data, Washington DC.

Agrawal, R. and R. Srikant, 1994, Fast Algorithms for Mining Association Rules, Proceedings
of the 20th International Conference on Very Large Data Bases, Santiago, Chile.

Agrawal, R. and R. Srikant, 1995, Mining Sequential Patterns, Proceedings of International
Conference on Data Engineering, Taipei, Taiwan.

Agrawal, R., D. Gunopulos and F. Leymann, 1998, Mining Process Models from Workflow
Logs, Proceedings of the 6th International Conference on Extending Database
Technology (EDBT), Valencia, Spain.

Alonso, G., M. Kamath, D. Agrawal, A. El Abbadi, R. Guenthoer and C. Mohan, 1994, Failure
Handling in Large Scale Workflow Management Systems, IBM Research Report
RJ9913, (IBM Almaden Research Center).

Anderberg, M.R., 1973, Cluster Analysis for Applications, (Academic Press Inc.).

34

Bettini, C., X.S. Wang, S. Jajodia and J.L. Lin, 1998, Discovering Frequent Event Patterns with
Multiple Granularities in Time Sequences, IEEE Transactions on Knowledge and
Data Engineering, Vol. 10, No. 2, pp.222-237.

Breiman, L., J. Friedman, R. Olshen and C. Stone, 1984, Classification and Regression Trees,
(Wadsworth, Pacific Grove).

Casati, F., S. Ceri, S. Paraboschi, and G. Pozzi, 1999, Specification and Implementation of
Exceptions in Workflow Management Systems, ACM Transactions on Database
Systems, Vol. 24, No. 3, pp.405-451.

Chiu, D., Q. Li and K. Karlapalem, 1999, A Meta Modeling Approach to Workflow
Management Systems Supporting Exception Handling, Information Systems, Vol.
24, No. 2, pp.159-184.

Chiu, D., Q. Li and K. Karlapalem, 2001, Web Interface-Driven Cooperative Exception
Handling in ADOME Workflow Management System, Information Systems, Vol.
26, No. 2, pp.93-120.

Cook, D. and L.B. Holder, 2000, Graph-based Data Mining, IEEE Intelligent Systems, Vol. 15,
No. 2, pp.32-41.

Cormen, T., C.E. Leiserson and R.L. Rivest, 1989, Introduction to Algorithms, (MIT Press)
485-488.

Datta, A., 1998, Automating the Discovery of AS-IS Business Process Models: Probabilistic
and Algorithmic Approaches, Information Systems Research, Vol. 9, No. 3,
pp.275-301.

Davenport, T., 1993, Process Innovation—Reengineering Work through Information
Technology, (Harvard Business School, Boston).

Eder, J., and W. Liebhart, 1998, Contributions to Exception Handling in Workflow Systems,
Proceedings of Extending Database Technology (EDBT) Workshop on Workflow
Management Systems, Valencia, Spain.

Gonzalez, J., I. Jonyer, L. B. Holder and D. J. Cook, 2000, Efficient Mining of Graph-based
Data, Proceedings of International Conference on Artificial Intelligence.

Hammer, M. and J. Champy, 1993, Reengineering the Corporation: A Manifesto for Business
Revolution, (Harper Business Press, New York).

Hwang, S.-Y. and W.-S. Yang, 2002, On the Discovery of Process Models from Their Instances,
To appear in Decision Support Systems, Vol. 34, No. 1, pp. 41-57.

Kaufman, L. and P.J. Rousseeuw, 1990, Finding Groups in Data: An Introduction to Cluster
Analysis, (John Wiley & Sons, Inc., New York).

Keim, D.A. and H. Kriegel, 1996, Visualization Techniques for Mining Large Databases: A
Comparison, IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6,
pp.923-927.

35

Kohonen, T., 1989, Self-organization and Associative Memory, (Springer).

Kohonen, T., 1995, Self-organizing Maps, (Springer).

Krishnakumar, N. and A.P. Sheth, 1995, Managing Heterogeneous Multi-system Tasks to
Support Enterprise-wide Operations, Distributed and Parallel Databases, Vol. 3, No.
2, pp.155-186.

Lesh, N., M.J. Zaki and M. Ogihara, 2000, Scalable Feature Mining for Sequential Data, IEEE
Intelligent Systems, Vol. 15, No. 2, pp.48-56.

Lin, F.R., S.C. Chou, S.M. Pan and Y.M. Chen, 2001, Mining Time Dependency Patterns in
Clinical Pathways, International Journal of Medical Informatics, Vol. 62, No. 1,
pp.11-25.

Mannila, H., H. Toivonen and A. I. Verkamo, 1995, Discovering Frequent Episodes in
sequences, Proceedings of the First International Conference on Knowledge
Discovery and Data Mining.

Mannila, H. and H. Toivonen, 1996, Discovering Generalized Episodes Using Minimal
Occurrences, Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining.

Ng, R., and J. Han, 1994, Efficient and Effective Clustering Methods for Spatial Data Mining,
Proceedings of International Conference on Very Large Data Bases, Santiago,
Chile.

Quigley, P.A., S.W. Smith and J. Strugar, 1998, Successful Experiences with Clinical Pathways
in Rehabilitation, Journal of Rehabilitation.

Quinlan, J.R., 1986, Induction of Decision Trees, Machine Learning, Vol. 1, No. 1, pp.81-106.

Quinlan, J.R., 1993, C4.5: Programs for Machine Learning, (Morgan Kaufmann, San Mateo).

Reichert, M. and P. Dadam, 1998, ADEPT—Supporting Dynamic Changes of Workflows
without Losing Control, Journal of Intelligent Information System, Vol. 10, No. 2,
pp.93-129.

Rissanen, J., 1983, A universal prior for integers and estimation by minimum description
length, Annals of Statistics, Vol. 11, pp.416-431.

Rumelhart, D.E. and G.E. Hinton and R.J. Williams, 1986, Learning Internal Representations
by Error Propagation, in: R.J. Williams, Parallel Distributed Processing:
Explorations in the Microstructures of Cognition, Vol. 1, (MIT Press, Cambridge)
318-362.

Sheth, A. and K. J. Kochut, 1997, Workflow Applications to Research Agenda: Scalable and
Dynamic Work Coordination and Collaboration Systems, Advances in Workflow
Management Systems and Interoperability, (Istanbul, Turkey).

Srikant, R. and R. Agrawal, 1996, Mining Sequential Patterns: Generalizations and
Performance Improvements, Proceedings of the 5th International Conference on

36

Extending Database Technology (EDBT), Avignon, France.

Srikant, R. and R. Agrawal, 1997, Mining Generalized Association Rules, Future Generation
Computer Systems, Vol. 13, No. 2-3, pp.161-180.

Tang, J. and S.Y. Hwang, 1996, Handling Uncertainties in Workflow Applications,
Proceedings of International Conference on Information and Knowledge
Management (CIKM’96).

WMC, 1994, The Workflow Reference Model, (Workflow Management Coalition).

37

A

B C E

D

(a) Process Instance (b) Temporal Graph for the Process Instance in (a)

B

A

C

D
EB

A

C

D
E

Figure 1. Example of Process Instance and Corresponding Temporal Graph

(a) Temporal Graph G

B

A

C

D

E

B

A

C

D

E

(b) G−{B}

A

C

D

E

A

C

D

E

(c) G−{C}

B

A
D

E

B

A
D

E

(d) G−{D}

B

A

C

E

B

A

C

E

(e) G−{E}

B

A

C

D

B

A

C

D

(f) G−{A}

B
C

D

E

B
C

D

E

Figure 2. Examples of Subtraction Operation

B

A

C

(a) Temporal Graph G1 (b) Temporal Graph G2

A

D

C

(c) Temporal Graph G3

D

A

C

Figure 3. Examples of Temporal Graphs of Size 3

(b)

B

C

D

A

(a)

B

C

D

A

Figure 4. Two Candidate Temporal Graphs Resulting from Joining G1 and G2 in Figure 3

38

(a) Process Instance

EB C DEB C D

1

2 3

5 7

8 9

G1
Temporal sequence:

<A, B, C>

A B C A
B

D
G2

Temporal sequence:
<A, B, D>

6

G3
Temporal sequence:

<A, C, D>

A C D

G4
Temporal sequence:

<B, C, D>

B C D B
C

E
G5

Temporal sequence:
<B, C, E>

4

C
B

D
G6

Temporal sequence:
<C, B, D>

A
B

C

B C

C D

C

1

2 3

5 7

8 9

G1
Temporal sequence:

<A, B, C>

A B C
G1

Temporal sequence:
<A, B, C>

A B CA B C A
B

D
G2

Temporal sequence:
<A, B, D>

A
B

D
A

B

D

B

D
G2

Temporal sequence:
<A, B, D>

6

G3
Temporal sequence:

<A, C, D>

A C D
G3

Temporal sequence:
<A, C, D>

A C DA C D

G4
Temporal sequence:

<B, C, D>

B C D
G4

Temporal sequence:
<B, C, D>

B C DB C D B
C

E
G5

Temporal sequence:
<B, C, E>

B
C

E
B

C

E

C

E
G5

Temporal sequence:
<B, C, E>

4

C
B

D
G6

Temporal sequence:
<C, B, D>

C
B

D
C

B

D

B

D
G6

Temporal sequence:
<C, B, D>

A
B

C

B C

C D

C

(b) A Segment of Hash-tree
Figure 5. Hash-tree for Candidate Temporal Graphs of Size 3

(a) Process Instance 1 (b) Process Instance 2

A

B C

A

B C

A

B

CA

B

C

Figure 6: Examples of Three Process Instances

A

B

C

D
E

A

B

C

D
E

(a) Process Instance

<{A, B}{B, C, D}{E}>

(b) Respective Quasi-sequence

Figure 7: Examples of Process Instance and Quasi-sequence

39

0

1000

2000

3000

4000

5000

2% 4% 6% 8% 10%
Minimum Support

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

1

100

10000

1000000

100000000

1 11 21 31 41 51 61
Pass Number

N
um

be
r o

f C
an

di
da

te
s

TP-Graph TP-Itemset TP-Sequence

 (a) Effects of Minimum Supports on Execution Times (b) Size of Candidates (Minimum Support = 2%)

Figure 8. Experimental Results: Effects of Minimum Support Thresholds

0

1000

2000

3000

4000

5000

5 10 15 20
Size of Potential Temporal Patterns (PS)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

0

1000

2000

3000

4000

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correlation Ratio (CR)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

 (a) Effects of Sizes of Potential Temporal Patterns (b) Effects of Correlation Ratios

0

1000

2000

3000

4000

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Length Ratio (LR)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

0

1000

2000

3000

4000

5000

400 600 800 1000 1200 1400 1600
Number of Activities (N)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

 (c) Effects of Length Ratios (d) Effects of Numbers of Activities

Figure 9. Experimental Results: Effects of Process Characteristics

40

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 20 30 40 50 60
Size of Process Instances (IS)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

0

5000

10000

15000

20000

25000

10000 20000 30000 40000 50000
Number of Process Instances (D)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

 (a) Effects of Sizes of Process Instances (IS) (b) Effects of Numbers of Process Instances (D)

Figure 10. Results of Scale-up Experiments

41

Table1. Parameters and Default Values for Synthetic Data Generation

Symbol Description Default
N
D
IS
PN
PS
CR
LR

Number of activities
Number of process instances
Size of process instances
Number of potential temporal patterns
Size of potential temporal patterns
Correlation ratio
Length ratio

1,000
10,000

20
1,000

10
0.5
0.5

