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Abstract. The location information of users can be replicated at various
databases in a hierarchy to improve the efficiency of call lookups at the expense
of increase in update and storage cost. In this paper, we systematically
investigate this problem and propose two solutions. The first solution has
optimal lookup and update cost, but the execution time could be exponential to
the number of databases. The second solution makes some assumptions and
then uses dynamic programming to tackle this problem. Its execution time is
dramatically reduced with the result being less optimal. Finally, to further
improve efficiency and reducing storage requirements, we propose the
incorporation of clustering techniques.

1   Introduction

Establishing a connection in a wireless environment requires the location
information of the callee, who may be on the move. While this problem is mostly
encountered at the data link or networking layer transparently from the layers above
it, applications may also need the location information at times, for instance, to
contact or move a mobile agent, to answer queries that involve locations, or to update
environmental parameters. This implies that future personal communication services
(PCS), with high user populations and numerous customer services, will incur heavy
signaling and database traffic for locating users [16]. Thus, deriving efficient
strategies for location management is an important issue to mobile computing
research.

In essential, there are two primitive operations for location management: lookups,
or searches, for the current location of a user when a call to her/him is required, and
updates when a user moves to a new location. Two kinds of architectures for location
databases are widely discussed in existing researches: the two-tier architectures based
on a pair of HLR/VLR and the hierarchical architectures composed of a number of
location registers connected through the intelligent network, such as SS7. In the
following, we extract the significant approaches that have been proposed to reduce the
cost of lookups and updates in both architectures [13].
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1.1   HLR/VLR schemes

In the basic two-tier scheme, as applied in IS-41 and GSM systems [10], two types
of databases, namely Home Location Register (HLR) and Visitor Location Register
(VLR), are maintained for storing the subscribers’ location information. Each mobile
system is associated with a HLR, which contains the location information of users
who subscribe to the system. As a mobile system may cover numerous smaller
geographical areas called zones, each zone is equipped with a VLR, which stores
location information of those users who currently visit the zone. When a call is
originated, the VLR of the caller is always queried first before consulting the HLR of
the callee. When a user moves across zones, the entry for the user is deleted from the
old VLR in addition to updating the user’s record in the HLR, and a new entry for the
user is created in the VLR of the newly arrived zone.

To provide faster lookup, [4] and [15] propose to cache or replicate the location
information of a user in the databases of additional zones, so that subsequent calls
from these zones can reuse this information. User i’s location information is
dynamically determined to store in the database of zone j if her Local Call to Mobility
Ratio LCMRi,j is larger than a threshold [2].

Rather than dynamically deciding where to cache a user’s location information,
[15] suggests a static way in determining where to replicate the location information,
given that the call rates and mobile rates of each user will not make abrupt change
between the adjacent invocations of their algorithm. In this case, the location
information of a user is replicated at some databases only if these replications bring
more savings on the lookup cost than the increase on the update cost. It has been
shown that off-line replication assignment problem can be reduced to a maximum-
flow problem of a network.

While the previous two schemes help to reduce the lookup cost for those who
receive more calls but do less move, those who receive calls less frequently relative to
their moving rate do not benefit. As opposed to caching or replication, forwarding
pointers is proposed with the aim to reduce the update cost [5]. In this scheme, each
time a mobile user moves to a new location, a forwarding pointer is installed on its
old VLR to point to the new VLR without the change to its HLR. Thus subsequent
consulting to the HLR will refer to the first VLR at which the user was registered, and
a chain of forwarding pointers to the user’s current VLR is followed.

1.2   Hierarchical schemes

To improve scalability, hierarchical location management extends the two-tier
schemes by maintaining a hierarchy of location databases. In its basic form, a leaf
location database contains entries for all users registered in its cell, and the one at a
higher level summarizes the location information (pointers) for users located at levels
below it. When it comes to call a user currently located in zone i from zone j, the
databases along the path from zone j to i via their least common ancestor (LCA) are
all traversed.

As in the HLR/VLR schemes, the ideas of pointer forwarding, caching, and
replication can also be applied in variant hierarchical schemes [6,7,9,12]. In the



following, we will describe the replication selection in the hierarchical scheme in
more detail as it is the main focus of this paper.

Similar to the strategy used in the 2-tier schemes, replicating the location
information of users at additional nodes in a hierarchy is allowed only when it is
judicious, that is, the benefit of replication exceeds its cost. In this context, replication
of the location information may occur at leaf nodes as well as the nodes at higher
levels in the hierarchy. At each node, two numbers, Rmin and Rmax, where Rmin < Rmax, are
derived. The call to mobility ratio of user i at zone j, LCMRi,j, is measured such that if
LCMRij < Rmin, replication of user i’s location information should never be done at
database j, and if LCMRij � Rmax, such replication should be always conducted. In case
Rmin � LCMRij < Rmax, there is no clear conclusion whether the replication of user i’s
location information at database j should be performed. In [7], an off-line algorithm is
proposed to determine the sites for replicating the profile of a user i. This algorithm
proceeds in two phases. In the first phase, all databases are traversed in a bottom-up
fashion, and replicas of user i’s profile is stored in a database j only if LCMRij � Rmax.
As there is a limit on the maximum number of replicas a user profile can have, the
second phase allocates the remaining replicas to databases with the largest non
negative LCMRij – Rmin, in a top-down fashion.

1.3   Motivation and Paper Organization

This paper focuses on the hierarchical scheme with user profile replication. The
two-phase algorithm proposed in [7], though simple, does not provide insights on
whether or why it works well. We discuss the nature of the replica assignment
problem in the context and propose an optimal solution to it. As the optimal solution
takes a long time to compute, we make further assumptions to simplify the problem
and then solve it via dynamic programming. Finally, rather than determining the
replica assignment on a per-user basis, we propose to first cluster mobile users based
on their calling and moving patterns and then perform the replica assignment for each
group. This will further improve the efficiency of replica assignment, in addition to
reducing the storage requirements.

The remainder of this paper is organized as follows. In Section 2, we describe the
nature of the problem and show how to achieve the optimal placement of profile
replicas for each user in terms of the cost of updates and queries to the location
information. Motivated by the high complexity of the optimal solution, in Section 3
we offer an approximate solution through a dynamic programming approach. In
Section 4, we present the idea to incorporate off-line clustering technique to further
reduce the complexity. Section 5 summarizes the current results and points out our
future work.

2   The Replica Assignment Problem

We follow the general hierarchical model as proposed in [7]. The problem is to
assign the profile replicas to a number of databases such that the overhead incurred
due to calling and moving is minimized. To simplify the problem, we consider the



system cost, which involves both communication cost and database operating cost,  as
the primary performance metric. Specifically, minimizing the total system cost
incurred during a time unit is our goal. Deciding which databases to store the replicas
of a user’s profile has to take into account a number of factors. To capture these
factors, we decide on several parameters. The notations of these parameters and their
meaning are summarized in Table 1.

Table 1. Notations and meaning of parameters

Notes Meaning
Ci,j

MI

Bl

bu

N
K
K’
D

Number of calls to user i from zone j during a time unit.
Number of moves (across zones) of user i during a time unit.
Look up cost.
Update cost.
Number of maximum profile replicas of each user.
Number of total databases in the hierarchy.
Number of databases in leaf level of the hierarchy.
Number of children of each non-leaf node in the hierarchy.

L Number of levels in the hierarchy.

Our goal is to find the replica assignment with the minimum cost for each user.
Thus, a straightforward approach is to first enumerate all possible assignments. And,
for each assignment, we calculate its total cost during a time unit. The assignment
with the minimum total cost is finally identified. For a given replica assignment of
user i’s profile, the total cost during a time unit, g, can be calculated as follows:

g = Σj∈ leaves of the hierarchyCij * hopsj * bl + Mi * bu * N’, (1)

where hopsj is the number of hops it requires to get the location information for a call
(to user i) from the zone of database j, and N’ the number of replicas in the
assignment. The first term in g is the total communication cost caused by looking up
the user’s profile for the calls from every zone, and the second term is that for
updating the user’s profile due to her/his moving. Hopsj can be determined by the
given replica assignment and the way pointers are organized. Let us first consider the
pointer organization used in the basic hierarchical scheme. Suppose among a set of
profile replicas one copy is assigned as the primary profile. A pointer in a non-leaf
database always points to the next lower level database that stores either the primary
profile or the pointer to the next lower level database. We can recursively define hopsj

as follows:
hopsj = 0  , if database j stores the user’s profile,

                                  = L  , if database j is the root of the hierarchy  and does
                                            not store the user’s profile,
                                  = 1 + hopsparent(j)  , otherwise.

(2)

In a given replica assignment, let xj denote whether user i’s profile is replicated in
database j. Solving the above recurrence equation, we obtain



hopsj = Σl=0 to L-1∏k=0 to l(1-xparent

k

(j))+∏k=0 to L (1-xparent

k

(j)) L,
(3)

where parentk(j) denotes the ancestor of database j that is k level higher in the
hierarchy. The complexity of computing hopsj is O(L2). It follows that computing g
for an assignment takes O(K’L2).

The number of replica assignments is equivalent to that of combinations for
choosing at most N databases out of K databases, which is

C(K, N) + C(K, N-1) + … + C(K,0) = ∑y=0 to NC(K, y).
(4)

When N=K, the complexity becomes O(2K), exponential to K, the total number of
databases. If the basic pointer organization is employed, the total time complexity for
the above brute force approach becomes O(∑y=0 to NC(K,y)K’L2). It is possible to design
another pointer organization that shortens the search path. Since the way pointers are
organized will not affect the choice of replication assignment, we will not further
discuss it in this paper.

3   A Dynamic Programming Approach

We consider in this section a simpler approach in deciding where to replicate a
given user’s profile. Let RA(z, K) be the optimal replica assignment problem in the
hierarchy rooted at z such that the number of replicas is no more than K and the total
benefit of replicating becomes maximum. RA(z, K) achieves the maximum replication
benefit of all databases rooted at z. The benefit of replicating the profile at the
database j can be defined as the difference between the decrease of total lookup time
and the increase of update time during a time unit. The total lookup time is in turn
determined by the number of hops a lookup takes before reaching the database that
stores the profile. Consider a call placed from the zone of a leaf k in the sub-tree
rooted at database j. If any database along the path between k and j replicates the
location information, the replication in database j does not help at all. By contrast, if
none of them ever replicates the location information, the amount of benefit depends
on where the profile is replicated along the path between j and the root. Therefore, the
decrease of total lookup time because of database j’s replication depends on the
replication of databases of its descendants as well as its ancestors. This makes the
principle of optimality non-applicable, and we are unable to express this problem
recursively for dynamic programming.

We therefore assume the average number of hops a call takes to be a constant,
denoted as H, the same assumption made in [7]. Let level(j) be the level of database j
in the hierarchy. For each call made from a leaf k in the sub-tree rooted at database j,
if none of databases along the path from k to j ever replicates the location information,
the decrease of total hops due to the replication on database j is H – level(j). We then
try to quantify those calls whose lookups require the traversal to database j. Let Ci,j be
the number of these calls. Clearly, Ci,j = Σk∈ D(j) Ci,k(1-Xi,k), where D(j) denotes the
(direct) children of j, and Xi,k =1 if database k contains the location information of user
i and Xi,k =0 otherwise. The benefit of replicating user i’s profile at database j , Bij,
becomes



Ci,j * bl * (H – level(j)) – Mi * bu. (5)

Let Oi,j be an optimal solution for Xi,k. If Oi,j =0, then all proper descendants of j
must constitute an optimal solution for the problem RA*(j1, N1), RA*(j2, N2), …, and
RA*(jd, Nd), where ji ∈  D(j) and Σi=1

dNi = N. However, if Oi,j = 1, then all proper
descendants of j may not constitute an optimal solution for the problem RA*(j1, N1),
RA*(j2, N2), …, and RA*(jd, Nd), where ji ∈  D(j) and Σi=1

dNi = N-1. Let gj(y) be the value
of an optimal solution to RA*(j, y). However, although the principle of optimality does
not hold in general, we can still define a function gr(N) as the value of a suboptimal
solution to RA*(r, N), which is defined as follws:

if Oi,j = 0,
gj(n) = max{ Σk∈ D(j) gk(nk): 0 ≤ nk ≤ N for k∈ D(j), and Σk∈ D(j) nk = N },

and if Oi,j = 1, then

gj(n) = max{ bj+Σk∈ D(j) gk(nk): 0 ≤ nk < N for k∈ D(j), and      1+Σk∈ D(j) nk = N },

(6)

where bj is benefit of replicating the location information in database j given that all
of j’s children are optimally assigned its replicas. We now can use dynamic
programming to compute the benefit gj(y) of all database j, y=0, …, N. The algorithm
is shown below:

(* L is the level of the root in the hierarchy *)
(* Given y is the number of maximum replicas, *)
(* xj[y] is the 0/1 assignment to database j ,*)
(*gj[y] is the benefit of the hierarchy rooted at j , and *)
(*cj[y) is the number of calls that are from the zone of database j
  and cannot find the user profile before reaching database j *)
For each database j in level 0 do
 Begin
   Benefit = Cij * bl * H – Mi * bu.;
   gj[0] = 0; xj[0] = 0;
   if Benefit > 0 then (* user i’s profile is replicated
                          on j for 1 <= y <= N *)
      For y=1 to N do
       Begin
         xj[y] = 1;  gj[y] = Benefit;  cj[y] = 0;
       End
   else (* user i’s profile is not replicated on j *)
      For y=1 to N do
       Begin
         xj[y] = 0;  gj[y] = 0;  cj[y] = Cij;
       End
 End
For l = 1 to L do
 Begin
   For each database j in level l do
      For y=0 to N do
       Begin
          Max0 = 0;
          For each combination (y1, y2, …, yd) such
            that Σyi = y do
   Begin
      Child_Benefit = 0;

     For each child ci of j do
                  Child_Benefit=Child_Benefit+gci(yi);

        If Child_Benefit > Max0 then
         Begin



            Max0 = Child_Benefit;
           Call0 = 0;
          For each child ci of j do

                          Call0= Call0 + cci[yi];
         End
  End
Max1 = 0;
For each combination (y1, y2, …, yd) such

            that Σyi = y-1 do
  Begin
    Child_Benefit = 0;
    For each child ci of j do

                  Child_Benefit=Child_Benefit+gci(yi);
     If Child_Benefit > Max1 then

      Begin
        Max1 = Child_Benefit;
        Call1 = 0;
        For each child ci of j do

                     Call1= Call1 + cci[yi];
      End

             End
            Benefit_j = Call1*bl*(H–l) – Mi*bu;
            If Max1 + Benefit_j > Max0 then
              Begin

     cj[y] = 0;
     gj[y] = Max1 + Benefit_j;
     xj[y] = 1;

              End
            else Begin

   Cj[y]=Call0;  gj[y]=Max0;  xj[y]=0;
             End
      End
 End

Note that the number of all permutations (y1, y2, … yd) such that Σyi = y is C(y+d, d-1).
Thus, the time complexity for the above algorithm is O(K · Σy=0 to N C(y+d, d-1)), which
is O(K · C(N+d+1, d)) ≈ O(K · N d). This complexity is much better than that of the
brute-force approach shown in the Section 2.

However, both the dynamic programming approach and HiPER proposed in [7] do
not always return optimal replica assignment. In the following section, we present a
preliminary experimental result that shows that, in most cases, the replication
assignment returned by the proposed dynamic programming approach is significantly
better than HiPER in terms of the total cost.

4 Experiment

In this section, we present the performance evaluation of three algorithms: the
HiPER algorithm proposed in [7], the dynamic programming algorithm described in
Section 3, and the brute-force approach discussed in Section 2. HiPER algorithm is
compared because it is also based on hierarchical database model. The result returned
by the brute-force approach, which is optimal, serves as a baseline for comparison.
The performance metric, as defined in section 2, is the total cost incurred per unit of
time. Most parameters listed in Table 1 are directly used in the experiments except Cij

and Mi, which model users’ calling and moving patterns respectively. In the
following, we will describe how these patterns are modelled in our experiment.



We assume the total number of calls each receives during a time unit is normally
distributed as N(CallM, CallD). For each user, we further assume the number of calls
she receives from various zones to be a Zeta distribution [7], which is shown in Fig. 1.
The sequence of zones in the x-axis is randomly generated.

Fig. 1. An example Zeta distribution (Alpha=1) of users’ call patterns

The average moving frequency of each user is modelled as a normal distribution
N(MoveM, MoveD). Also note that we use AvgH to indicate the average number of
hops before one profile copy is found, which was defined as H in the dynamic
programming approach and 2E[LCA] in HiPER. These parameters and their settings
are summarized in Table 2.

Table 2. The setting of parameters

Notes Setting values
D
L
N
CallM
CallD
Alpha
MoveM
MoveD
Bl

Bu

4
3
15
100
25
0.5 ~ 1.5
4
2
1
1

AvgH
HL

2, 3, 4
1, 2

Fig. 2 compares the cost of three algorithms under AvgH=4, HL=2. It shows that
the dynamic programming approach, DynaPro, incurs less cost than HiPER in most
cases. Besides,  the result of DynaPro is quite stable and close to the optimal solution.
We have also tried other values for AvgH and HL, and the relative performance
between DynaPro and HiPER remains approximately the same.
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Fig. 2. The performance comparison of three algorithms

5 Incorporating Clustering Techniques

As the area covered by the hierarchy is usually huge, the number of users could be
quite large. Deciding the replicas on a per-user basis is thus very time-consuming. We
notice that some users could have similar behavior in their calling and moving
patterns, especially when bigger zones, as covered by the databases at higher levels in
the hierarchy, are considered. This section describes an approach that incorporates
clustering techniques in determining the replica assignment.

Clustering techniques arise naturally in several ways where the process to create
partitions or clusters is required. To convey clustering to computers, the vague
concept of association for partitioning in human behavior must be translated into a
numeric measure of the degree of similarity or dissimilarity [1]. Various suggestions
to measure the similarity between objects of various types have been proposed [14].
In practice, the Minkowski metric (Lq), as described below, is used to measure the
similarity between two interval or ratio vectors, with the distances of Manhattan (q=1)
and Euclidean (q=2) as special cases. That is, the distance between vectors <Xi1,
Xi2, …, Xip> and <Xj1, Xj2, …, Xjp> in p-dimensional space is:

Lq=(|Xi1-Xj1|
q +|Xi2-Xj2|

q+|Xi3-Xj3|
q+…+|Xip-Xjp|

q)1/q (7)

Based on the measure of similarity, existing algorithms for clustering can be
classified into two categories: hierarchical clustering and partitioning clustering [8].
The former organizes objects as a nested sequence of groups. An important
characteristic of this method is visual impact of the dendrogram, which enables a data
analyst to see how objects are to be merged into clusters or splitted at successive
levels of proximity. Thus, the analyst can try to decide how many clusters to be
generated at some fixed level of proximity, which makes most sense for the
application in hand. It can be progressed either agglomerative or divisive in the
variant linkage methods [3].

Given the number of partitions k, a partitioning method tries to find the best k
partitions. It attempts to determine a cluster in which the objects are more similar to
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each other than in another clusters. There are many clustering techniques based on
this kind of approaches, such as K-means, K-medoid and fuzzy analysis [1], [11]. It
has been shown that the clusters produced in partitioning methods depend on the
initial values for the means and group numbers [8]. To avoid this weakness, two-
phase clustering has been suggested to take advantage of both schemes, as will be
described below.

Our work tries to cluster mobile users according to their mobile patterns. This is
motivated by the inefficient computation to decide the profile replicas for each user.
After clustering users into groups, profile replication can be conducted for each
group. This will improve the execution efficiency as well as reducing the storage
requirements. In this scenario, each member of the same group replicates her/his
profile in the same databases. To perform clustering, we need to define the vector for
each user and the similarity function. Call to mobility ratio (LCMR) at each zone is
adopted as the basic element for constituting vectors. Specifically, each user is
represented as a vector composed of a sequence of LCMRs, each of which is for the
zone in a particular level in the hierarchy. The Minkowski distance (Lq), as defined
below, has been adopted as the similarity function:

Lq = (|LCMRi1-LCMRj1|
q + |LCMRi2-LCMRj2|

q +…+ |LCMRik’-LCMRjk’|
q)1/q (8)

Our approach allows clustering to be applied on some intermediate level of a
hierarchy. It is observed that in some cases, clustering at higher level introduces more
cohesive clustering, in addition to faster clustering due to fewer elements in each
vector. For example, when q=1, it can be seen that the distance between user i and j
measured on parent zone is always shorter because of the following inequation:

|(Ci1+ Ci2)/Mi – (Cj1+Cj2)/Mj| ≤ |Ci1 /Mi-Cj1 /Mj|
 + |Ci2 /Mi -Cj2 /Mj| (9)

That is, user i and j have more similarities in mobile behaviors on parent zone
(LCA1,2). To constrain the number of groups, it may be more appropriate to perform
clustering on some level other than the leaf level. We can then use the approach
described in Section 3 on a per-group basis to determine the replication on the
databases at and above the level in the hierarchy. However, since the calling
frequencies (Cij) at higher level are determined by the replication of its children zones,
we have to first decide the replication of the databases below the level. We propose to
adopt Phase-One algorithm in [7] for determining where to replicate for the nodes in
the lower levels.

A database j should always replicate user i’s profile if the following inequation is
satisfied:

Cij bl > Mi bu (10)

In other words, if LCMRij (i.e., Cij /Mi) > bl /bu, the decrease of lookup cost is more
than the increase of update cost even if the parent of j also replicates user i’s profile.
In [7], Rmax is defined to be bl /bu, and phase one of their algorithm picks up those
databases with LCMRs greater than Rmax in a bottom manner.

Our algorithm also proceeds in two phases. Let Lc be the level in the hierarchy
where clustering is to be conducted. In the first phase, for each mobile user, a bottom
up traversal in the hierarchy up to level Lc-1 is performed to determine the placement



of the profile on a database only if its LCMR > Rmax. Then we cluster the users into
groups based on their LCMRs. After the first phase, let K” be the maximum number
of databases that store the profile replicas for each member in a group. In the second
phase, we use the dynamic programming approach described in Section 3 to perform
RA(r, N-K”) for each group, if K” < N.

We are still left out with the problems of how to choose the level in the hierarchy
for clustering and how clustering should be conducted. As described before, the
clustering algorithms in the literature can be classified into two kinds: hierarchical
clustering and partitioning. While hierarchical clustering tries to achieve the best
clustering by continuously splitting the groups until the result is satisfactory, the
partitioning approach aims to accomplish the best clustering for a given cardinality. A
straightforward approach is to first use some hierarchical clustering approach on each
level in the hierarchy in a bottom up fashion. If the number of groups obtained in a
level is not small enough, the next higher level is tried. This procedure continues until
the groups are cohesive and the number of groups is reasonably small. Once the level
and the ideal number of groups are decided, partitioning is followed.

Up to now one may wonder the usefulness of incorporating clustering because
clustering tends to take a long time (approximate time complexity is O(n3) for
agglomerative-nesting algorithm, where n is the number of vectors [8]). We argue that
the first phase of our approach can be conducted less often, while the second phase is
performed more frequently as shown in Fig. 3. The rationale behind such an
arrangement is that user’s mobile behavior should be stable within a certain long
period of time. Such a period determines the interval between the adjacent invocations
of the first phase of our algorithm. The second phase of our algorithm, which can be
conducted more often, is then used to fine-tune the replication assignment.

Fig. 3.  The two-phases clustering

6   Conclusions

This paper investigates the location replication problem in a hierarchy of databases.
With some simplification, we propose a dynamic programming approach for solving
this problem. A preliminary experimental result shows that the dynamic programming
approach returns better replica assignment in most cases. To further reduce the
overhead of storage requirements and execution complexity, we incorporate
clustering techniques which group mobile users with similar mobility behavior. More
comprehensive performance evaluation is currently under way for thorough com-
parisons.
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