
Personal Workflows: Modeling and Management*

San-Yih Hwang and Ya-Fan Chen

Department of Information Management
National Sun Yat-sen University

Kaohsiung, Taiwan 80424
syhwang@mis.nsysu.edu.tw

Abstract. As mobile devices are getting powerful, reliable, and inexpensive,
more and more personal services have been introduced to individuals via their
mobile devices. These services enable users to perform a broad range of
activities at any time and anywhere. While a lot of research and development
effort has been focusing on extending the scope of activities that can be carried
out on mobile devices, little attempt has been made to provide process-oriented
services. In this paper, we propose a model for specifying and querying
personal processes. This model is equipped with a set of operations that allow
mobile users to express queries on their personal processes. Answers of these
queries will help mobile users in planning their activities while they are on the
move. We have designed and implemented a prototyped personal workflow
system on Palm Pilot PDA based on the proposed model. Experiences with this
implementation are provided.

1 Introduction

As microcomputers and wireless technologies are getting their maturity, personal
mobile computers (PMCs) such as PDAs and mobile phones are becoming popular.
The services provided to the PMCs reduce users’ space and time constraints. There
have been many applications developed for PMCs. As an example, there are more
than 100,000 applications available solely for Palm Pilot PDAs [10]. Typical
applications include calendar, memo, address book, and to do list. However, while
these applications allow users to record and retrieve information about tasks and data,
the relationships between tasks and data are left out. In fact, many of people’s daily
activities are not independent, and they are likely to be process-oriented.

Traditional workflow management systems (WFMSs) are designed to coordinate
business processes in enterprises. These processes must be repetitive and have well-
formed structures. In this paper, we focus on the specification and execution of
processes that constitute personal tasks and data. We call these processes personal
processes and the system that coordinates personal processes personal workflow

* This work is supported in part by the National Science Council in Taiwan under grant number

NSC91-2219-E-110-003.

management system (PWFMS). The following example illustrates the merit a
PWFMS may bring about.

An example

A college student Rita specifies two personal processes in her PWFMS: the class
registration process and a party holding process. The class registration process
follows the regulation of the college in registering classes that she plans to take in the
coming semester and paying the required fee. It is made up of several tasks such as
requesting registration forms, filling in forms, getting signatures from advisor and
department head, paying course fee, etc. The party holding process is designed to
prepare a party to be held in the near future and is composed of tasks like planning,
finding the place, shopping, sending invitation letters, and so on. Once the two
processes are successfully specified, her PWFMS is expected to provide a number of
personal services such as the following:

1. When Rita walks close to a department office, her PWFMS reminds her of
getting signatures from the department head, provided all data required to
accomplish this task is ready.

2. When Rita decides on a number of tasks to perform, her PWFMS informs
her to carry the data items required for these tasks.

3. When Rita determines to pay course fee at a bank, her PWFMS advises her
that sending invitation letters (for the party holding process) can also be
done nearby.

4. Suppose Rita plans to pay course fee today. Paying course fee requires an
“invoice” from the registrar office. Her PWFMS will instruct her that a
number of tasks need to be done first in order to receive the invoice.

To provide such personal services, we need to define a personal process model that
allows users to specify individual tasks as well as their interdependencies. This model
also provides a set of primitive operations. By properly combining several operations,
users can inquire the current status of an ongoing process, determine the set of tasks
that can be performed in the same trip, plan the future work for accomplishing a
particular goal, and so forth.

However, traditional business process models and commercial WFMSs are not
suitable in the context of personal process management due to the following reasons:

1. Each personal process instance has a unique structure. In other words, after a
personal process is specified, most likely only one instance will be executed.

2. Personal tasks are primarily related by their executable time, executable
places, and input and output data. Unlike enterprises that impose many
regulations and procedures that need to be followed strictly by their
processes, human beings seldom impose rigid rules on their personal tasks.
As a result, the specification of control flow constructs such as or-split, and-
split, or-join, and and-join, is rarely needed.

3. The main objective of a PWFMS is to remind or provide suggestions to a
mobile user, rather than to enforce task executions as does a commercial
WFMS. Therefore, traditional workflow scheduling issues, which address

how to determine the mapping between tasks and available resources, do not
seem to exist in this context.

4. The coordination between steps of each process has to be flexible. It is quite
often that a mobile user executes a task that produces unexpected results or
even engages in a totally unexpected task. In this case, rather than rejecting
this change, the personal workflow system examines the impact of this
change and provides suggestions.

These unique features call for a novel design of personal process model and PWFMS.
In this paper, we focus on the model for specifying and querying personal

processes. This model is equipped with a set of operations, which enable mobile users
to place queries about the execution status of a personal process. We have also
constructed a PWFMS prototype that implements three components: storage manager,
query processor, and process recommendation system. Experiences of this
prototyping effort are also provided.

Related work

Personal information services and applications (PISA) were revealed in [4] as a
challenging area of future wireless computing. However, the issues examined mainly
concern transactional services and cache consistency. In [7], an architecture called
Rome was proposed to manage triggers at a centralized infrastructure. Mobile users
will be alerted to do something when the trigger conditions have been satisfied. The
main contribution of the architecture is an infrastructure- centric approach to the
trigger management problem. In summary, these work intend to provide more
services to personal activities rather than personal processes.

Issues for integrating mobile computing and workflow management technologies
were discussed in [8]. The focus was how to conduct efficient resource management
and provide convenient electronic document browsing to incorporate field workers
into workflow management. A prototyped workflow system called WHAM that
supports mobile applications was described in [9]. A novel workflow management
model based on mobile agents located in wired or wireless networks was proposed by
[6]. Although these work all addressed processes in a mobile environment, the goal
was on extending workflow technologies to support mobile workforces for business
processes, rather than handling activities for personal processes.

In [1], Abeta and Kakizaki designed a PDA system that accumulated and extracted
operation records of workers working on the same project. Temporal relationships
between work events were identified and served as basis for making recommendation
for event browsing. The goal was not to help schedule personal processes.

Paper organization

This paper is organized as follows. Section 2 is devoted to the description of the
proposed personal process model. Section 3 presents a set of primitive operations for
formulating the queries. We have built a prototyped system on Palm Pilot PDA that
implements the proposed model and several components proposed in the architecture.

This prototype provides a high level interface that allows the specification and
querying of personal processes. Section 4 describes this prototype and the lessons we
learned from this prototyping effort. Finally, in Section 5, we conclude this paper by
reviewing what we have done and pointing out our future work.

2 Personal process model

In this section, we define the syntax of personal processes. A personal process is
comprised of the following components:
z a set T of tasks,
z a set D of data,
z several functions that map a task to its name (Φn), the input data set(Φi), the

output data set(Φo), the executable time intervals(Φi), the executable
places(Φp):
� Φn: T→String
� Φi: T→2D
� Φo: T→2D
� Φt: T→2Time×Time, where Time is the set of time.
� Φp: T→2Point×Point, where Point is the set of geographical points, each of

which is expressed as (latitude, longitude),
z a function ∆n:D→String that maps a data to its associated name.
In addition, there are attributes that record the execution status of tasks and data.

We call these attributes control attributes. In this paper, we consider two control
attributes, Φs and ∆s , that are associated with tasks and data respectively. Φs: T →
(UNEXECUTED, EXECUTING, COMPLETED) reveals the status of a task, which
could be unexecuted, executing, or completed. ∆s: D→ (UNAVAILABLE,
AVAILABLE) describes the availability of a data item.

The four functions Φi, Φo, Φt, Φp, are attributes pertaining to tasks. Φt and Φp are
time and place attributes that specify respectively when and where the pertaining task
can be performed. Φi and Φo are input and output attributes that specify the sets of
data items that this task takes as input and output respectively. For representation
purpose, we adopt meta graph for visualizing data dependencies. A metagarph is a
graph-theoretic construct that captures relationships between pairs of sets of elements
[2]. In its pictorial representation, a set of elements is surrounded by a small cycle,
and the edges are arrows connecting the cycles. That is, an edge represents the
direction of the input-to-output relationship between two element sets produced by a
task. As an example, Figure 1 shows the metagraph of the party holding process
described in Section 1.

We distinguish data in the input and output attributes into two kinds: primitive and
processed. A primitive data is not produced by any task modeled in the system, and a
processed data must be generated by at least one other task. A primitive data could be
a data file, a blank form, a personal belonging (e.g., the ID card, credit card), or
anything that is physically available somewhere. A processed data is available only
when at least one task that is capable of producing it is completed. For example, the

task sending invitation letters takes two data items as input: ‘Invitation Letters’ and
‘Credit Card’. The former is a processed data item, which can only be generated by
writing invitation letters, while the latter is a primitive data item.

Note that in the proposed model, there is no rigid order on task executions. Tasks
are associated by their respective attribute values, which may implicitly decide their
execution orders. For example, if a task T2 needs a data item that can only be
produced by T1, T2 will not execute before T1 terminates.

Similar to the other process models, a personal process model also has its
constraints. Here we define two types of constaints: reachability and liveness. To
address both constraints in the context of personal processes, we define the starting
data set S={d∈D: d is a primitive data item} and a target data set G⊆D for a process
model, where the availability of each data item in G marks the successful termination
of the personal process. Formally, reachability and liveness of a personal process P(T,
D) are defined as follows:

Definition 1: A personal process P(T, D) is reachable if for every task t∈T, there
exist a metapath that connects S and Φi(t) and a metapath that connects Φo(t) to at
least one data item in G.

Definition 2: A personal process P(T, D) is live if there exists a metapath that
connects S to D.

If a personal process is not live, its execution will not achieve the goal of the
process. If a personal process is not reachable, at least one of its tasks becomes
redundant. In either case, the entire process definition is considered incorrect and
needs modification. Details for checking the existence of a metapath can be found in
[2], which also shows several other types of workflow analysis.

Receipt
Invitation

List

Time

planning finding a

place Place

Invitation
Cards

Credit Card

Shopping
List

buying

invitation

cards

Decoration
Stuff

Food

buying
decoration stuff

buying food

Invitation
Letters

writing
invitation
letters

sending
invitation
letters

Figure 1: The meta graph of a party holding process

3 Algebraic operations

Since a personal process is modeled as a combination of task set and data set,
traditional set operations like intersection (∩), union (∪), and difference (−) are
applicable. Besides, as tasks and data are associated with a set of predefined attributes
(functions), relational operator selection (σ) can also be applied. The combinations of
these relational operations are powerful enough to answer many types of queries.
However, the relational expressions are often lengthy and inefficient in handling
queries frequently raised on personal processes, such as those described in the
example of Section 1. We therefore propose several operations that enable easier
specification and efficient execution of users’ queries. Based on the types of data they
needs, they can be classified into four categories: binary operations with operands T ×
T, binary operations with operands D × D, binary operations with operands D × T,
and unary operations with operand T.
z T × T→T: These are binary operations that take operands of type T. These

operations include UNION, INTERSECTION, DIFFERENCE,
TIME_OVERLAP, and PLACE_OVERLAP. UNION, INTERSECTION
and DIFFERENCE operations are basic set operations. TIME_OVERLAP
(PLACE_OVERLAP) is used for retrieving a subset of tasks in the first
operand whose execution times (places) overlap with some task in the
second operand.

z D × D→D (T): UNION, INTERSECTION, and DIFFERENCE operations
are also applicable to operands of type D. In addition, we propose a new
operation NEED_TASK that returns a set of tasks that takes data items in the
first operand as the input and produces the data set in the second operand.

z D × T→T :One operation MAKE_EXECUTABLE is proposed. It identifies
a subset of executable tasks in the second operand while given the data items
in the first operand as the input.

z T→D: This category contains two operations, namely COMBINED_INPUT
and COMBINED_OUTPUT, that return the aggregate input and output
respectively for executing the tasks in the first operand.

More formally, the new operations are defined below:
DEFINITION (PLACE_OVERLAP, po): Given two sets S1 and S2 of tasks,

PLACE_OVERLAP, denoted po , produces a subset of S1 whose executing place

overlaps with the executing place of some task in S2. Formally,
))}2,1(_,.22,.11,S t2(,1:1{ 2121 ppOVERLAPRECTANGLEptpptpSttSS p ∈∃∈∃∈∃∈=o

DEFINITION (TIME_OVERLAP, to): Given two sets S1 and S2 of tasks,

TIME_OVERLAP, denoted to , produces a subset of S1 whose executing time
overlaps with the executing time intervals of some task in S2. Formally,

))}2,1(_,.22,.11,S t2(,1:1{ 2121 iiOVERLAPINTERVALttittiSttSS t ∈∃∈∃∈∃∈=o

DEFINITION (MAKE_EXECUTABLE,
dt
→): Given a set T of tasks and a set D

of data, MAKE_EXECUTABLE, denoted
dt
→ , returns a subset of T, each of which

has the input data as a subset of D. Formally, }.,:{ DitTttTD
dt

⊆∈=→ .

DEFINITION (NEED_TASK,
dd
→): Given two data sets D1 and D2,

NEED_TASK operation, denoted
dd
→ , produces a set T of tasks that can be

collectively executed by taking D1 as the input and producing D2 and has the lowest
cost. Let MinMetaPath(D1, D2) be a function that returns the minimum cost of all
possible task sets that connect D1 and D2. MinMetaPath(D1, D2) can be defined
recursively as follows:

MinMetaPath(D1, D2) = 0 if D2⊆D1
MinMetaPath(D1, D2)= Minimum

DTOutput 2)'(=
(MinMetaPath(D1,Input(T’)) + Cost(T’)),

 where Input(T’) and Output(T’) denote the aggregate input data set and the aggregate
output data set of a task set T’, respectively. Further Cost(T’) = ∑t∈T’Priority(t), where
Priority(t) is the priority of task t assigned by the mobile user.

DEFINITION (COMBINED_INPUT, i↑): Given a set T of tasks,
COMBINED_INPUT operation, denoted i↑ , returns a set of data, each of which is
an element of input data of some element in T but not in the output data of any
element in T . Formally, }:.{}:.{ (T) TtotTtiti ∈∪−∈∪≡↑ .

DEFINITION (COMBINED_OUTPUT, o↑): Given a set T of tasks,
COMBINED_OUTPUT operation, denoted o↑ , returns a set of data, each of which
is an element of output data of some task in T. Formally, }:.{ (T) Ttoto ∈∪≡↑ .

The meaning and notations of set operations (∪, ∩, and −) and select operation (σ)
are defined the same as in the relational model [10] and omitted here for brevity. In
the following, we illustrate the power of the proposed operations by showing several
query examples:
1. Find the set of tasks that need to be done in order to produce ‘receipt’.

σs=available(D) NEED_TASK σn=’receipt’(D)
2. Find a set of tasks that can be co-executed with ‘buying invitation cards’, when

‘planning’ and ‘finding a place’ are both completed.

T

T

TTT

TTD

cards' invitation buying

cards invitation buying

placeafindingplanningunexecuted

placeafindingplanningavailable

)) () ()((

))) () (()(((

'nt

''np

' ' n' ' n s
dt

' ' n' ' no s

=

=

===

===

−−→

∪↑∪

σ

σ

σσσ

σσσ

o

o

3. Find the set of data that is needed to complete tasks ‘finding a place’, ’buying
invitation cards’, and ’buying decoration stuff’.

i↑ (σn=’finding a place’(T) ∪σn=’buying invitation cards’(T) ∪σn=’buying decoration stuff’(T))
4. Retrieve the set of tasks with a given data item (‘receipt’) as part of its input.

σi=’ receipt ’(T)
5. Retrieve the set of tasks whose executions results in the generation of a

specified data item (‘receipt’).
σo=’ ‘receipt’(T)

6. Find the set of tasks that can be executed immediately (Note that CURRENT is
a system-defined dummy task that has the current time and the current place as
the attribute values).

σs=available(D)
dt
→ σs=unexecuted(T) to CURRENT po CURRENT

Note that there may not be a unique way for expressing a given users’ inquiry.
Two query expressions are said to be equivalent if they are destined to generate the
same result based on any kind of data set. Query optimization aims to identify an
expression with the least cost among all equivalent expression. In order to find such
an optimal query expression, expression rules that generate equivalent expressions
have to be consulted. An expression rule specifies how to transform an expression
into a logically equivalent one. The set of equivalence rules are not enumerated here
due to space limitation. Interesting readers are referred to [3] for a detailed coverage
of the query optimization issues.

4 Implementation

To prove our concept, we have implemented a PWFMS prototype that includes
three components, namely the storage manager and query processor at the client, and
the process recommendation system at the server. The client program was
implemented on a Palm Pilot by using J2ME-CLDC (Java 2 Micro Edition,
Connected, Limited Device Configuration) as the develop tool. The process
recommendation system at the server is a web-based system that was implemented by
using PHP and Oracle 8 as the database.

Process definition

Personal processes can be either explicitly specified by mobile users or downloaded
from the process recommendation system located on the server. To explicitly specify
a personal process, a mobile user must supply information required for the process,
including the tasks, the input/output data, and the mapping functions. Figure A-1 and
A-2 in the Appendix display screenshots for defining a task and entering input data
set respectively.

Specifying a personal process precisely could be a difficult job, especially when
this process has to comply with regulations of some organizations. To deal with these
difficulties, we have developed a personalized process recommendation system that
provides personalized workflow templates in a particular domain. Every organization
has its intended set of customers and must have some processes that interact with its
customers. Each such a process can be visualized as (part of) a personal process when
a customer needs to interact with the organization in order to achieve a particular goal.

Therefore, we advocate that an organization should organize these processes and
provide them as personalized processes in a particular format. The provision of
personalized processes can be seen as a personalization endeavor of an organization
in that different customers with different background and/or interests may receive
different personal processes even for accomplishing the same job. After downloading
a personalized process, a mobile user will be reminded of things that need to be done
at the right time and the right place with the help of his/her PWFMS.

We call each distinct process definition a workflow template. The designer of a
personal process has to elaborate all workflow templates and, for each workflow
template, indicate the associate attribute values. For example, suppose the process
designer has identified that there are three distinct workflow templates T1, T2, and T3.
The designer further discovers that only {A1, A2, A3} are relevant to template T1,
{A2, A3, A5} are relevant to template T2, and {A2, A4} are relevant to template T3.
These specifications are shown in Table 1.

Table 3: A possible template specification
Workflow template A1 A2 A3 A4 A5
T1 a11 a21 a31 any any
T2 any a21 a32 any a31
T3 any a22 any a41 any

A notable observation from Table 1 is that the conditions that are associated to any
pair of workflow templates must be exclusive. Otherwise, it is possible that a mobile
person with specific background may be eligible to two different templates, which
will be confusing.

These workflow template specifications will be organized in a decision tree from
which questions about users’ interests or background can be posed. Formally,
suppose there are n templates: T1, T2, …, Tn. Each template Ti, 0≤i≤n, has an access
probability pi and a condition specification on a subset of m attributes: A1, A2, …, Am.
The objective is to construct a decision tree such that
1. the path that leads to each template Ti, 0≤i≤n, in the decision tree must satisfy

the condition corresponding to Ti, and

2. the function ∑
=

⋅
n

i
ii pl

1
is minimized, where li is the length of the path that leads

to a template Ti.
This problem could be NP-hard. Here we adopt a greedy heuristic that favors the

attributes that are involved in the specification of more popular templates. More
precisely, for each attribute Aj, we compute the aggregate probability Pj of the
templates that involve Aj as follows: ∑=

AjTi
ij pP

 involves ofcondition the
. The attribute with

the highest aggregate probability is chosen as the first distinguishing attribute in the
decision tree. Depending on the values of this attribute, workflow templates are
clustered into a number of (non-exclusive) groups. The same method is recursively
applied to each group to construct the decision tree. This procedure terminates when a

group contains only one template and the condition of the template has been fully
specified along the path to the root.

Figure A-3 shows two screenshots for downloading the student registration
process of our university, which involves eight attributes (including gender, student
status, and loan requirement).

Query processing

To ease the query formulation, we have designed a language construct SELECT-
FROM-GIVEN that is similar to the basic SELECT-FROM-WHERE blocks of SQL.
The operation to be performed and its output attributes are specified in ‘SELECT
clause. The process(es) to which this operation is applied to is declared in ‘FROM
clause. The ‘GIVEN clause describes the operands as well as the constraints on data,
tasks, time, and place. However, it is still unlikely that an ordinary user will specify a
query conforming to the proposed query syntax. We therefore predefined some
frequently used queries that require a mobile user only to specify parameters. The
screenshots for dynamically changing the status of a task (e.g., from un-executed to
completed) and the invocation of pre-defined queries are shown in Figure A-4 and A-
5 respectively.

5 Conclusions

We have introduced a personal process model and operations for expressing user’s
inquiries on their personal processes. A PWFMS prototype on Palm Pilot and a
personalized process recommendation system on the server located on the fixed
network have been implemented.

As web services are becoming popular, more and more business processes or tasks
will be available on the Internet in the form of web services. We are in the course of
extending the PWFMS framework to incorporate web services from various
enterprises. The idea is that a mobile user can invoke the web service of a task in a
personal process and automatically receive notification upon completion of the task.
In our opinion, the PWFMS is an excellent platform for arranging related web
services to achieve mobile users’ personal goals. The identification of suitable
business workflows and the synchronization between a personal workflow and
business workflows within respective organizations will be explored.

References

1. A. Abeta, K. Kakizaki, “Implementation and evaluation of an automatic personal workflow
extraction method,” Proc. of Int’l. Conf. on Computer Software and Application Conference
(COMPSAC), pp.206 –212, 1999.

2. A. Basu and R. W. Blanning, “A Formal Approach to Workflow Analysis,” Information
Systems Research, 11(1), 2000, pp.17-36.

3. Ya-Fang Chen, “The Research on Personal Workflow Systems in Support of Pervasive
Computing,” Master thesis, National Sun Yat-sen University, July 2001.

4. A. Elmagarmid, J. Jing, and T. Furukawa, “Wireless Client/Server Computing for Personal
Information Services and Applications,” ACM SIGMOD RECORD, 24(4), 1995, pp.16-21.

5. R. Elmasri, S. B. Navathe, Fundamentals of Database Systems, Ch. 7, Addison
Wesley, Massachusetts, 2000.

6. W. Gang, W. Quanyuan, W. Huaimin, “A novel workflow management model based on
mobile agents for internet electronic commerce,” Proc. 36th Int'l. Conf. on Technology of
Object-Oriented Languages and System (TOOLS), pp.182–187, 2000.

7. A. Huang, B. Ling, S. Ponnekanti, “Pervasive Computing: What is it good for?”, Proc. of
ACM Int'l Workshop on Data Engineering for Wireless and Mobile Access, pp.84-91, 1999.

8. J. Jing, K. Huff, H. Sinha, B. Hurwitz, B. Robinson, “Workflow and Application
Adaptations in Mobile Environments," Proc. of 2nd IEEE Workshop on Mobile Computing
Systems and Applications, pp.62-69, 1999.

9. J. Jing, K. Huff et al, "WHAM: Supporting Mobile Workforce and Applications in
Workflow Environment", Proc. of 10th Int'l .Workshop on Research Issues in Data
Engineering, pp. 31-38, 2000.

10. http://www.palmblvd.com.

Appendix: Screenshots of the PWFMS prototype

Figure A-1: Task definition Figure A-2: Input data definition

Figure A-3: Downloading a personal process from the process recommendation

system

Figure A-4: Changing the status of tasks Figure A-5: Showing the pre-

defined queries

