Graph

· A directed graph G is an ordered pair (V, E), where V is a finite set and E is a binary relation on V
· In an undirected graph, E is a subset of 2-subset of V (i.e. E consists of unordered pairs)

· In a directed graph, we say an edge (u, v) is incident from u or incident to v. We can also say v is adjacent to u. For an undirected graph (V, E), we say an edge (u, v) (E is incident on u and v.
· The degree of a vertex in an undirected graph is the # of edges incident on it.
· For a vertex in a directed graph, we distinguish the degree as in-degree and out-degree.
· A path of length k is a sequence <v0, v1, (, vk> s.t. (vi-1, vi) (E for i = 1, (,k.
· If there is a path from u to v, we say v is reachable from u.
· A simple path is the one without duplication of vertices on its sequence.
· A cycle is a path <v0, v1, (, vk> s.t. v0 = vk.
· A cycle <v0, v1, (, vk> is simple if v1, v2, (, vk are distinct.
· A graph with no cycles is acyclic.
· An undirected graph is connected if every pair of vertices is connected by a path.
· A directed graph is strongly connected if every 2 vertices are reachable from each other.
· 2 graphs G = (V, E) and G’ = (V’, E’) are isomorphic if there exists a bijection

f : V (V’ s.t. (u, v) (E iff (f(u), f(v)) (E’. See Fig. 5.3 on p.89.

· A graph G’ = (V’, E’) is a subgraph of G = (V, E) if V’ (V and E’ (E.
· A complete graph is an undirected graph in which every pair of vertices is adjacent.
· A bipartite graph is an undirected graph G = (V, E) in which V can be partitioned into 2 sets V1 and V2 s.t. ((u, v) (E, u (V1, v (V2 or u (V2, v (V1.
· A multigraph is like an undirected graph, but it allows multiple edges between vertices and self-loops.
A hypergraph is like an undirected graph, but each edge is allowed to connect more than 2 vertices.

Breadth First Search(BFS)

See Fig.6-10 for BFS on 8-puzzle problem. Use a FIFO queue to implement

Q←{root}

While Q≠Φ do

{

P←Remove(Q);

If P = goal stop;

D←descendent(P);

For each element d
[image: image1.wmf]Î

D do

If NOT-VISITED(d) then

Add(Q, d);

}

· Why is NOT-VISITED(d) needed?

Depth First Search(DFS)

Use a LIFO stack to implement:

S←{root}

While S≠Φ do

{

P←Pop(S);

If P = goal stop;

D←descendent(P);

For each element d
[image: image2.wmf]Î

D do

If NOT-VISITED(d) then

Push(S, d);

}

_1064170647.unknown

