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Analyze the insertion sort algorithm

	INSERTION-SORT(A)
	Cost
	times

	For j(2 to length[A]
	c1
	n

	  key(A[j]
	c2
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	/* insert A[j] into the sorted sequence A[1..j-1] */
	0
	
[image: image2.wmf]1

-

n



	  i(j
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	  While i>0 and A[i]> key
	c5
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· In the best case, where the input array is already sorted, tj =1 for j=2, 3, …, n. Therefore the running time is
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We call T(n) a linear function of n.

· In the worst case, where the input array is listed in descending order, tj =j for j=2, 3, …, n. 
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. Thus, the running time becomes 
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We call T(n) a quadratic function of n.

· In most cases, only the worst case is considered. Sometimes, we also consider the average-case or the expected running time of an algorithm. For the average case analysis, it is commonly assumed that all inputs of a given size are equally likely.

· Q: What is the average running time of INSERTION-SORT?

Merge Sort

· It uses the divide-and-conquer approach:

· Divide: Dividing the n-element sequence into two subsequences of n/2 elements each.

· Conquer: Sort the two subsequences recursively using merge sort.

· Combine: Merge the two sorted subsequences to produce the sorted answer.

· The pseudo-code is as follows:

MERGE-SORT(A, p, r)

If p<r

Then q(((p+r)/2(


MERGE-SORT(A, p, q)



MERGE-SORT(A, q+1, r)



MERGE(A, p, q, r)

· The running time T(n) is given below:
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· Q: Show that if n=2k, T(n)=nlgn.

(-notation

· ((g(n)) is a set of functions as defined below:

((g(n))={f(n): there exist positive constants c1, c2, and n0 such that 0(c1g(n) (f(n) (c2g(n) for all n(n0}.

· It is obvious ((n2) includes many quadratic functions as such 5n2, 0.5n2-3n, and 0.5n2+9n+3. [Q: what are the values for c1, c2, and n0 in each case?]

· Strictly speaking, we should denote 2n2+9n+3(((n2). However, in convention, equality (=) is abused to denote set membership. That is, we usually write 2n2+9n+3=((n2).

· We say that g(n) is asymptotically tight bound for f(n) if f(n) = ((g(n)).

· More precisely, the running time T(n) of merge-sort should be written as 
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O-notation

· O-notation deals with only an asymptotic upper bound. It is formally defined as below:

O(g(n))={f(n): there exist positive constants c and n0 such that 0(f(n) (cg(n) for all n(n0}.

· Similarly, to denote that a function f(n) is a member of O(g(n)), we write f(n) = O(g(n)).

· O-notation is mainly used to analyze the worst-case running time of an algorithm.

(-notation

· In contrast to O-notation, (-notation provides an asymptotic lower bound. It is formally defined as below:

( (g(n))={f(n): there exist positive constants c and n0 such that 0(cg(n) (f(n) for all n(n0}.

· O-notation is mainly used to analyze the best-case running time of an algorithm.

o-notation

· o-notation denote an upper bound that is not asymptotically tight. That is

o(g(n))={f(n): for any positive constant c > 0, there exists a constant n0>0 such that 0(f(n) <cg(n) for all n(n0}.

· That is 
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(-notation

· By analogy, (-notation is used to denote a lower bound that is not asymptotically tight. It is formally defined as below:

( (g(n))={f(n): for any positive constant c > 0, there exists a constant n0>0 such that 0( cg(n) <f(n) for all n(n0}.

· That is 
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Exercises

· 2.1-1 and 2.1-4

Other common functions

· (monotonically increasing): A function f(n) is monotonically increasing if m(n implies f(m) (f(n).

· (strictly increasing): A function f(n) is strictly increasing if m<n implies f(m)<f(n).

· (monotonically decreasing): A function f(n) is monotonically decreasing if m(n implies f(m)(f(n).

· (strictly decreasing): A function f(n) is strictly increasing if m<n implies f(m)>f(n).

· Floors and ceilings
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· A polynomial in n of degree d is a function of the form:
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a0, a1, …, ad are called coefficients.

· 
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· 
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. That is, any exponential function grows faster than any polynomial.

· 
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 [How is it computed? Hint: use Taylor’s expansion equation]

· 
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 [Can you show it?]

· 
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 [Can you show it? Hint: use Taylor’s expansion equation]

· Logarithms
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 , when |x|<1. [Can you prove it?]
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· Factorials

· The following is Stirling’s approximation:
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· Fibonacci numbers:

F0=0, F1=1, Fi=Fi-1+Fi-2.
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· The Fibonacci numbers grow exponentially. (Why?)

Exercises

· 2.2-5.
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