Lecture Note for 資管系Algorithms

國立中山大學資訊管理系

黃三益

2001/9/25
Chapter 1, 2 Algorithm Analysis

Analyze the insertion sort algorithm

	INSERTION-SORT(A)
	Cost
	times

	For j(2 to length[A]
	c1
	n

	 key(A[j]
	c2
	
[image: image1.wmf]1

-

n

	/* insert A[j] into the sorted sequence A[1..j-1] */
	0
	
[image: image2.wmf]1

-

n

	 i(j
	c4
	
[image: image3.wmf]1

-

n

	 While i>0 and A[i]> key
	c5
	
[image: image4.wmf]å

=

n

j

j

t

2

	 A[i+1] (A[i]
	c6
	
[image: image5.wmf])

1

(

2

-

å

=

n

j

j

t

	 i (i-1
	c7
	
[image: image6.wmf])

1

(

2

-

å

=

n

j

j

t

	 A[i+1](key
	c8
	
[image: image7.wmf]1

-

n

[image: image8.wmf])

1

(

)

1

(

)

1

(

)

1

(

)

1

(

)

(

8

2

7

2

6

2

5

4

2

1

-

+

-

+

-

+

+

-

+

-

+

=

å

å

å

=

=

=

n

c

t

c

t

c

t

c

n

c

n

c

n

c

n

T

n

j

j

n

j

j

n

j

j

· In the best case, where the input array is already sorted, tj =1 for j=2, 3, …, n. Therefore the running time is

[image: image9.wmf])

(

)

(

)

1

(

)

1

(

)

1

(

)

1

(

)

(

8

5

4

2

8

5

4

2

1

8

5

4

2

1

c

c

c

c

n

c

c

c

c

c

n

c

n

c

n

c

n

c

n

c

n

T

+

+

+

-

+

+

+

+

=

-

+

-

+

-

+

-

+

=

We call T(n) a linear function of n.

· In the worst case, where the input array is listed in descending order, tj =j for j=2, 3, …, n.
[image: image10.wmf]2

)

1

(

1

,

1

2

)

1

(

2

2

-

=

-

-

+

=

å

å

=

=

n

n

j

n

n

j

n

j

n

j

. Thus, the running time becomes

[image: image11.wmf])

1

(

)

2

)

1

(

(

)

2

)

1

(

(

)

1

2

)

1

(

(

)

1

(

)

1

(

)

(

8

7

6

5

4

2

1

-

+

-

+

-

+

-

+

+

-

+

-

+

=

n

c

n

n

c

n

n

c

n

n

c

n

c

n

c

n

c

n

T

We call T(n) a quadratic function of n.

· In most cases, only the worst case is considered. Sometimes, we also consider the average-case or the expected running time of an algorithm. For the average case analysis, it is commonly assumed that all inputs of a given size are equally likely.

· Q: What is the average running time of INSERTION-SORT?

Merge Sort

· It uses the divide-and-conquer approach:

· Divide: Dividing the n-element sequence into two subsequences of n/2 elements each.

· Conquer: Sort the two subsequences recursively using merge sort.

· Combine: Merge the two sorted subsequences to produce the sorted answer.

· The pseudo-code is as follows:

MERGE-SORT(A, p, r)

If p<r

Then q(((p+r)/2(

MERGE-SORT(A, p, q)

MERGE-SORT(A, q+1, r)

MERGE(A, p, q, r)

· The running time T(n) is given below:

[image: image12.wmf]ê

ë

é

>

+

=

=

1

)

2

/

(

2

1

1

)

(

n

if

n

n

T

n

if

n

T

· Q: Show that if n=2k, T(n)=nlgn.

(-notation

· ((g(n)) is a set of functions as defined below:

((g(n))={f(n): there exist positive constants c1, c2, and n0 such that 0(c1g(n) (f(n) (c2g(n) for all n(n0}.

· It is obvious ((n2) includes many quadratic functions as such 5n2, 0.5n2-3n, and 0.5n2+9n+3. [Q: what are the values for c1, c2, and n0 in each case?]

· Strictly speaking, we should denote 2n2+9n+3(((n2). However, in convention, equality (=) is abused to denote set membership. That is, we usually write 2n2+9n+3=((n2).

· We say that g(n) is asymptotically tight bound for f(n) if f(n) = ((g(n)).

· More precisely, the running time T(n) of merge-sort should be written as

[image: image13.wmf]ê

ë

é

>

Q

+

=

Q

=

1

)

(

)

2

/

(

2

1

)

1

(

)

(

n

if

n

n

T

n

if

n

T

O-notation

· O-notation deals with only an asymptotic upper bound. It is formally defined as below:

O(g(n))={f(n): there exist positive constants c and n0 such that 0(f(n) (cg(n) for all n(n0}.

· Similarly, to denote that a function f(n) is a member of O(g(n)), we write f(n) = O(g(n)).

· O-notation is mainly used to analyze the worst-case running time of an algorithm.

(-notation

· In contrast to O-notation, (-notation provides an asymptotic lower bound. It is formally defined as below:

((g(n))={f(n): there exist positive constants c and n0 such that 0(cg(n) (f(n) for all n(n0}.

· O-notation is mainly used to analyze the best-case running time of an algorithm.

o-notation

· o-notation denote an upper bound that is not asymptotically tight. That is

o(g(n))={f(n): for any positive constant c > 0, there exists a constant n0>0 such that 0(f(n) <cg(n) for all n(n0}.

· That is

[image: image14.wmf]0

)

(

)

(

lim

=

¥

®

n

g

n

f

n

.

(-notation

· By analogy, (-notation is used to denote a lower bound that is not asymptotically tight. It is formally defined as below:

((g(n))={f(n): for any positive constant c > 0, there exists a constant n0>0 such that 0(cg(n) <f(n) for all n(n0}.

· That is

[image: image15.wmf]¥

=

¥

®

)

(

)

(

lim

n

g

n

f

n

.

Exercises

· 2.1-1 and 2.1-4

Other common functions

· (monotonically increasing): A function f(n) is monotonically increasing if m(n implies f(m) (f(n).

· (strictly increasing): A function f(n) is strictly increasing if m<n implies f(m)<f(n).

· (monotonically decreasing): A function f(n) is monotonically decreasing if m(n implies f(m)(f(n).

· (strictly decreasing): A function f(n) is strictly increasing if m<n implies f(m)>f(n).

· Floors and ceilings

[image: image16.wmf]ë

û

é

ù

1

1

+

<

£

£

<

-

x

x

x

x

x

.

· A polynomial in n of degree d is a function of the form:

[image: image17.wmf]i

d

i

i

n

a

n

p

å

=

=

0

)

(

, where

a0, a1, …, ad are called coefficients.

·
[image: image18.wmf]n

m

n

m

m

n

mn

n

m

a

a

a

a

a

a

a

a

a

+

-

=

=

=

=

=

,

)

(

)

(

,

1

,

1

1

0

·
[image: image19.wmf]0

lim

=

¥

®

n

b

n

a

n

. That is, any exponential function grows faster than any polynomial.

·
[image: image20.wmf]å

¥

=

=

+

+

+

+

=

0

3

2

!

!

3

!

2

1

i

i

x

i

x

x

x

x

e

L

 [How is it computed? Hint: use Taylor’s expansion equation]

·
[image: image21.wmf]2

1

1

x

x

e

x

x

+

+

£

<

+

 [Can you show it?]

·
[image: image22.wmf]x

n

n

e

n

x

=

+

¥

®

)

1

(

lim

 [Can you show it? Hint: use Taylor’s expansion equation]

· Logarithms

[image: image23.wmf]a

n

a

b

b

b

c

c

b

b

b

c

c

c

a

k

k

e

b

b

n

b

n

a

b

a

a

a

b

a

a

a

n

a

b

a

ab

b

a

n

n

n

n

n

n

n

n

log

log

log

2

log

1

log

log

)

/

1

(

log

log

log

log

log

log

log

log

)

(

log

)

lg(lg

lg

lg

)

(lg

lg

log

ln

log

lg

=

=

-

=

=

=

+

=

=

=

=

=

=

[image: image24.wmf]L

-

+

-

+

-

=

+

5

4

3

2

)

1

ln(

5

4

3

2

x

x

x

x

x

x

 , when |x|<1. [Can you prove it?]

[image: image25.wmf]

[image: image26.wmf]x

x

x

x

£

+

£

+

)

1

ln(

1

· Factorials

· The following is Stirling’s approximation:

[image: image27.wmf]))

1

(

1

(

)

(

2

!

n

n

e

n

n

n

Q

+

=

p

[image: image28.wmf])

lg

(

)

!

lg(

)

2

(

!

)

(

!

n

n

n

n

n

o

n

n

n

Q

=

=

=

w

· Fibonacci numbers:

F0=0, F1=1, Fi=Fi-1+Fi-2.

[image: image29.wmf]5

Ù

F

-

F

=

i

i

i

F

, where

[image: image30.wmf]2

5

1

+

=

F

 (golden ratio),

[image: image31.wmf]2

5

1

-

=

Q

Ù

.

· The Fibonacci numbers grow exponentially. (Why?)

Exercises

· 2.2-5.

_1062662541.unknown

_1062668431.unknown

_1062669478.unknown

_1062670011.unknown

_1062670356.unknown

_1062670496.unknown

_1062670539.unknown

_1062670136.unknown

_1062669717.unknown

_1062669808.unknown

_1062669608.unknown

_1062668707.unknown

_1062669042.unknown

_1062668572.unknown

_1062667376.unknown

_1062668044.unknown

_1062668267.unknown

_1062667887.unknown

_1062666051.unknown

_1062667039.unknown

_1062663930.unknown

_1062661900.unknown

_1062662406.unknown

_1062662533.unknown

_1062661965.unknown

_1062661856.unknown

_1062661866.unknown

_1062658980.unknown

_1062658959.unknown

