Dynamic Programming

· Designed to solve optimization problem.

· Dynamic programming also divides a problem into several subproblems. However, some subproblems may share subproblems.

· Dynamic programming saves time by computing each subproblem only once.

· To do so, it must be conducted in a bottom-up fashion.

Matrix-chain Multiplication

Input: A sequence of n matrices
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Output: A fully parenthesized product that has minimum cost.

How much does it cost to compute?
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# of multiplications: m × n × p
# of additions: m × (n-1) × p
Let the dimension of 
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Cost of 
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P(n) ≡ # of alternative parenthesizations of n matrices.
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· Ex. 
Refer to p. 262
Show P(n) = C(n-1)

· Recursive equation:
m[i, j] ≡ minimum # of multiplications needed to computed 
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· Note that there are totally 
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· We compute m[i,j] from l = 0, … , n-1, where l = j –i.
· See p.306 for the pseudo code.

p.307 for the visualization of execution (16.3) result.

· The time complexity of using dynamic programming for solving matrix multiplication: 
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· The space of this algorithm is 
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Elements of Dynamic Programming

The problem has the following properties:

1. Optimal substructure:

A solution is optimal only if its subsolution to the subproblem is optimal.

2. Overlapping subproblems:

· the same subproblem is visited over and over again.

· the # of distinct subproblem is polynomial.

See Fig. 16.2 in p. 311

· See p. 311 for the recursive version of matrix-chain.
Let the execution time be T(n)
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· Let 
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The Largest Common Subsequence Problem

· E.g. A subsequence of 
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· Formal definition:
Given a sequence 
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 is a subsequence of X if there exists a strictly increasing sequence 
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· The longest common subsequence (LCS) problem, is that, given 2 sequences X and Y, find a common subsequence that is of longest length.

· Brute-force approach:
Enumerate all subsequences of X and Y, and compare each pair to see whether they are the same, and finally identify the one whose length is the longest.

· Exponential time!

· The optimal substructure:
Given a sequence 
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· Theorem:
Let 
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· c[i,j] ≡ the length of an LCS of 
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· See p. 317 for the algorithm.
   Fig. 16.3 for the result visualization.
See PRINT_LCS() in p.318 for printing LCS.

Optimal Polygon Triangulation
· A polygon: a sequence of straight-line segments that close at the end.
e.g.
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· A polygon is simple if all segments do not cross.
e.g.


· A simple polygon is convex if the line segments that connect any two boundary points are in the boundary or interior of the polygon.

· A convex polygon can be represented by listing its vertices in counterclock-wise order.
See Fig. 16.4

· A triangulation of a polygon is a set of chords that divide the polygon into disjoint triangles.
e.g. 
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 is a triangulation of Fig. 16.4.

· The optimal triangulation problem:
Given a convex polygon 
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 and a weighting function w defined on triangles, find a triangulation that minimizes the sum of weights of triangles in the triangulation.

· How to define the weight of a triangle?
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A natural one is 
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· Mapping: 

· A parenthesization of n matrix       a parse tree of n leaves

· A triangulation of (n+1) vertices        a parse tree of n leaves

· See Fig. 16.4(a) Fig. 16.5(b)
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 Fig. 16.5(a)

· The optimal substructure

· t[i,j] ≡ the weight of triangulation of 
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· How to map the matrix-multiplication problem to the polygon triangulation problem?

· Input:  
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Output: a convex polygon 
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the weight of a triangle 
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Greedy Algorithms

An activity-selection problem
e.g. Fig. 17.1 in p.331

· Input: A sets of activities, each of which is represented by a half-open time interval 
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Output: A maximum-size set of activities, no pair of which intersects w/ each other.

· The Brute-Force approach: Examine every subset of activities.

· The greedy approach

· Assume activities are listed in ascending order by their finish time.

· Always pick up the activities that has the smallest index and does not overlap w/ other selected activities.
· See the middle of p. 330

· Theorem: The algorithm produces optimal solution.

· Lemma: There exists an optimal solution that contain activity one.

Proof: 

Suppose A is an optimal solution, and that first activity in A is activity k. If k=1, then the lemma holds.

Otherwise we can replace activity k by activity 1, and form another set 
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Obviously activity 1 does not overlap w/ any other activity in B.

Therefore B is an optimal solution that contain the first activity.
· Theorem-proof:

Observation: Let A be an optimal solution that contains activity 1. 
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From Lemma 1, we know there exists an optimal solution that contains the 1st greedy choice.

Suppose there exists an optimal solution A that contains the first k greedy choice, namely activities 
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By Lemma 1, there exists an optimal solution that contains the first k+1 greedy choice.

· Ex.
p.333 17.1-1

Ingredients of a Greedy Algorithm

· Greedy choice property

· A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

· Make a choice at each step. But this choice does not depend on the solutions to subproblems.

· Optimal substructure

· The same as dynamic programming.

· Because of the above ingredients, a problem that is solved by a greedy algorithm can always be solvable by dynamic programming.

· When to use the greedy algorithm?
· Only when you can prove an optimal solution begins w/ a greedy choice.

· E.g. the fractional knapsack problem.

The Huffman Codes

See Fig 17.4 in p.339

· Input: A set of characters C and their reference framework F.

· Output: A set of distinct bitstrings, each of which represents a character. S.t., the summation of weighted lengths is minimized.

· Algorithm: p.340

· Complexity: 
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· Correctness:

· Lemma 1:

· Suppose x and y are the 2 characters w/ the least frequencies. There exists an optimal prefix code in which the bitstrings for x and y have the same length and differ only in the last bit.

· Lemma 2:

· Consider any 2 characters x and y that appear as sibling leaves in an optimal prefix code tree, and let Z be their parent. Then 
[image: image57.wmf]}

,

{

y

x

T

-

 represents an optimal code tree for 
[image: image58.wmf]}

{

}

,

{

Z

y

x

C

È

-

.

� EMBED Equation.3  ���


� EMBED Equation.3  ���














_1066563632.unknown

_1066567098.unknown

_1066571510.unknown

_1066573011.unknown

_1066573532.unknown

_1066575237.unknown

_1066576605.unknown

_1066916315.unknown

_1066916617.unknown

_1066916939.unknown

_1066916363.unknown

_1066577105.unknown

_1066577103.unknown

_1066575365.unknown

_1066576560.unknown

_1066575289.unknown

_1066574695.unknown

_1066575186.unknown

_1066574409.unknown

_1066573266.unknown

_1066573275.unknown

_1066573057.unknown

_1066572782.unknown

_1066572909.unknown

_1066572974.unknown

_1066572895.unknown

_1066572390.unknown

_1066572517.unknown

_1066572040.unknown

_1066568523.unknown

_1066570712.unknown

_1066571207.unknown

_1066571495.unknown

_1066571206.unknown

_1066568814.unknown

_1066567851.unknown

_1066567965.unknown

_1066567757.unknown

_1066565898.unknown

_1066566846.unknown

_1066567003.unknown

_1066566581.unknown

_1066566697.unknown

_1066566754.unknown

_1066566610.unknown

_1066566546.unknown

_1066564055.unknown

_1066564068.unknown

_1066563696.unknown

_1066554668.unknown

_1066554756.unknown

_1066562251.unknown

_1066562708.unknown

_1066554711.unknown

_1066554492.unknown

_1066554646.unknown

_1066554315.unknown

