Dynamic Programming

· Designed to solve optimization problem.

· Dynamic programming also divides a problem into several subproblems. However, some subproblems may share subproblems.

· Dynamic programming saves time by computing each subproblem only once.

· To do so, it must be conducted in a bottom-up fashion.

Matrix-chain Multiplication

Input: A sequence of n matrices

[image: image1.wmf]n

A

A

A

A

´

´

´

´

...

3

2

1

Output: A fully parenthesized product that has minimum cost.

How much does it cost to compute?

[image: image2.wmf]p

n

n

m

B

A

´

´

´

of multiplications: m × n × p
of additions: m × (n-1) × p
Let the dimension of
[image: image3.wmf]i

A

 be
[image: image4.wmf]i

i

P

P

´

-

1

Cost of
[image: image5.wmf](

)

3

2

1

A

A

A

´

´

 is
[image: image6.wmf]3

2

0

2

1

0

P

P

P

P

P

P

´

´

+

´

´

P(n) ≡ # of alternative parenthesizations of n matrices.

[image: image7.wmf]ï

î

ï

í

ì

³

-

×

=

=

å

-

=

1

1

.

2

if

)

(

)

(

,

1

if

1

)

(

n

k

n

k

n

P

k

P

n

n

P

· Ex.
Refer to p. 262
Show P(n) = C(n-1)

· Recursive equation:
m[i, j] ≡ minimum # of multiplications needed to computed
[image: image8.wmf]j

i

i

A

A

A

´

´

´

+

...

1

[image: image9.wmf]ï

î

ï

í

ì

<

´

´

+

+

+

=

=

-

£

£

.

if

}

]

,

1

[

]

,

[

{

min

,

if

0

]

,

[

1

j

i

P

P

P

j

k

m

k

i

m

j

i

j

i

m

j

k

i

j

k

i

· Note that there are totally
[image: image10.wmf]n

j

i

j

i

m

n

£

£

£

÷

÷

ø

ö

ç

ç

è

æ

+

1

]

,

[

2

1

.
· We compute m[i,j] from l = 0, … , n-1, where l = j –i.
· See p.306 for the pseudo code.

p.307 for the visualization of execution (16.3) result.

· The time complexity of using dynamic programming for solving matrix multiplication:
[image: image11.wmf])

(

3

n

O

.

· The space of this algorithm is
[image: image12.wmf])

(

2

n

Q

.

Elements of Dynamic Programming

The problem has the following properties:

1. Optimal substructure:

A solution is optimal only if its subsolution to the subproblem is optimal.

2. Overlapping subproblems:

· the same subproblem is visited over and over again.

· the # of distinct subproblem is polynomial.

See Fig. 16.2 in p. 311

· See p. 311 for the recursive version of matrix-chain.
Let the execution time be T(n)

[image: image13.wmf]å

å

-

=

-

=

+

³

>

+

-

+

+

³

³

1

1

1

1

)

(

2

)

(

1

for

)

1

)

(

)

(

(

1

)

(

1

)

1

(

n

i

n

k

n

i

T

n

T

n

k

n

T

k

T

n

T

T

· Let
[image: image14.wmf]1

2

)

(

-

³

n

n

T

[image: image15.wmf]l

exponentia

2

2

2

)

1

2

(

2

2

2

)

(

1

1

2

1

Þ

³

+

-

=

+

-

=

+

×

³

-

-

-

=

å

n

n

n

n

i

i

n

n

n

n

T

The Largest Common Subsequence Problem

· E.g. A subsequence of
[image: image16.wmf]B

A

D

B

C

B

A

,

,

,

,

,

,

 is
[image: image17.wmf]D

C

A

,

,

, where
[image: image18.wmf]C

A

B

,

,

 is not.

· Formal definition:
Given a sequence
[image: image19.wmf]m

x

x

x

X

,...,

,

2

1

=

, another sequence
[image: image20.wmf]k

z

z

z

Z

,...

,

2

1

=

 is a subsequence of X if there exists a strictly increasing sequence
[image: image21.wmf]k

i

i

i

,...,

,

2

1

 of indices of X s.t.
[image: image22.wmf],

,...,

1

k

j

=

"

 we have
[image: image23.wmf]j

i

z

x

j

=

.

· The longest common subsequence (LCS) problem, is that, given 2 sequences X and Y, find a common subsequence that is of longest length.

· Brute-force approach:
Enumerate all subsequences of X and Y, and compare each pair to see whether they are the same, and finally identify the one whose length is the longest.

· Exponential time!

· The optimal substructure:
Given a sequence
[image: image24.wmf]m

x

x

x

X

,...,

,

2

1

=

, the ith prefix of X, denoted
[image: image25.wmf]i

X

, is
[image: image26.wmf]i

x

x

x

,...,

,

2

1

.

· Theorem:
Let
[image: image27.wmf]m

x

x

x

X

,...,

,

2

1

=

,
[image: image28.wmf]n

y

y

y

Y

,...,

,

2

1

=

 be sequences, and let
[image: image29.wmf]k

z

z

z

Z

,...

,

2

1

=

 be any LCS of X and Y.

[image: image30.wmf]longer.

is

 whichever

,

and

of

LCS

or the

and

of

LCS

 the

be

must

 then

,

If

2.

.

and

of

LCS

an

is

 then

,

If

1.

1

1

1

1

1

-

-

-

-

-

¹

=

n

m

n

m

n

m

k

n

m

Y

X

Y

X

Z

y

x

Y

X

Z

y

x

· c[i,j] ≡ the length of an LCS of
[image: image31.wmf]j

i

Y

X

and

.

·
[image: image32.wmf]ï

î

ï

í

ì

¹

>

-

-

=

>

+

-

-

=

=

=

.

and

0

,

if

])

,

1

[

],

1

.

[

max(

,

and

0

,

if

1

]

1

,

1

[

,

0

or

0

if

0

]

,

[

j

i

j

i

y

x

j

i

j

i

c

j

i

c

y

x

j

i

j

i

c

j

i

j

i

c

· See p. 317 for the algorithm.
 Fig. 16.3 for the result visualization.
See PRINT_LCS() in p.318 for printing LCS.

Optimal Polygon Triangulation
· A polygon: a sequence of straight-line segments that close at the end.
e.g.

[image: image59.wmf]i

v

[image: image60.wmf]i

v

· A polygon is simple if all segments do not cross.
e.g.

· A simple polygon is convex if the line segments that connect any two boundary points are in the boundary or interior of the polygon.

· A convex polygon can be represented by listing its vertices in counterclock-wise order.
See Fig. 16.4

· A triangulation of a polygon is a set of chords that divide the polygon into disjoint triangles.
e.g.
[image: image33.wmf]}

,

,

,

{

6

4

6

3

3

1

3

0

V

V

V

V

V

V

V

V

 is a triangulation of Fig. 16.4.

· The optimal triangulation problem:
Given a convex polygon
[image: image34.wmf]1

1

0

,...,

,

-

=

n

v

v

v

P

 and a weighting function w defined on triangles, find a triangulation that minimizes the sum of weights of triangles in the triangulation.

· How to define the weight of a triangle?

[image: image35.wmf]j

v

[image: image36.wmf]k

v

A natural one is
[image: image37.wmf]i

k

k

j

j

i

k

j

i

v

v

v

v

v

v

v

v

v

w

+

+

=

D

)

(

· Mapping:

· A parenthesization of n matrix a parse tree of n leaves

· A triangulation of (n+1) vertices a parse tree of n leaves

· See Fig. 16.4(a) Fig. 16.5(b)

[image: image38.wmf](

)

(

)

(

)

(

)

(

)

6

5

4

3

2

1

A

A

A

A

A

A

 Fig. 16.5(a)

· The optimal substructure

· t[i,j] ≡ the weight of triangulation of
[image: image39.wmf]1

1

1

,

,...,

,

-

+

-

j

j

i

i

v

v

v

v

·
[image: image40.wmf]ï

î

ï

í

ì

<

D

+

+

+

=

=

-

-

£

£

.

if

)}

(

]

,

1

[

]

,

[

{

min

,

if

0

]

,

[

1

1

j

i

v

v

v

w

j

k

t

k

i

t

j

i

j

i

t

j

k

i

j

k

i

· How to map the matrix-multiplication problem to the polygon triangulation problem?

· Input:
[image: image41.wmf]i

i

i

n

P

P

A

A

A

A

A

´

´

´

´

´

-

1

3

2

1

dimension

of

is

...

Output: a convex polygon
[image: image42.wmf]n

v

v

v

,...,

,

1

0

, where a side
[image: image43.wmf]1

+

i

i

v

v

 is of weight

[image: image44.wmf]1

+

´

i

i

P

P

, a chord
[image: image45.wmf]j

i

v

v

 is of weight
[image: image46.wmf]j

i

p

p

´

.
the weight of a triangle
[image: image47.wmf]j

k

i

j

k

i

p

p

v

v

v

´

´

D

p

is

)

(

.

Greedy Algorithms

An activity-selection problem
e.g. Fig. 17.1 in p.331

· Input: A sets of activities, each of which is represented by a half-open time interval
[image: image48.wmf])

,

[

i

i

f

s

.
Output: A maximum-size set of activities, no pair of which intersects w/ each other.

· The Brute-Force approach: Examine every subset of activities.

· The greedy approach

· Assume activities are listed in ascending order by their finish time.

· Always pick up the activities that has the smallest index and does not overlap w/ other selected activities.
· See the middle of p. 330

· Theorem: The algorithm produces optimal solution.

· Lemma: There exists an optimal solution that contain activity one.

Proof:

Suppose A is an optimal solution, and that first activity in A is activity k. If k=1, then the lemma holds.

Otherwise we can replace activity k by activity 1, and form another set
[image: image49.wmf]}

1

{

}

{

È

-

=

k

A

B

.

Obviously activity 1 does not overlap w/ any other activity in B.

Therefore B is an optimal solution that contain the first activity.
· Theorem-proof:

Observation: Let A be an optimal solution that contains activity 1.
[image: image50.wmf]}

1

{

'

-

=

A

A

 is also an optimal solution to
[image: image51.wmf]}

:

{

'

i

i

f

s

S

i

S

³

Î

=

.

From Lemma 1, we know there exists an optimal solution that contains the 1st greedy choice.

Suppose there exists an optimal solution A that contains the first k greedy choice, namely activities
[image: image52.wmf]k

i

i

i

,...,

,

2

1

.

Therefore,
[image: image53.wmf]}

,...,

,

{

2

1

k

i

i

i

A

-

 is also an optimal solution to
[image: image54.wmf]}

:

{

'

ik

i

f

s

S

i

S

³

Î

=

By Lemma 1, there exists an optimal solution that contains the first k+1 greedy choice.

· Ex.
p.333 17.1-1

Ingredients of a Greedy Algorithm

· Greedy choice property

· A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

· Make a choice at each step. But this choice does not depend on the solutions to subproblems.

· Optimal substructure

· The same as dynamic programming.

· Because of the above ingredients, a problem that is solved by a greedy algorithm can always be solvable by dynamic programming.

· When to use the greedy algorithm?
· Only when you can prove an optimal solution begins w/ a greedy choice.

· E.g. the fractional knapsack problem.

The Huffman Codes

See Fig 17.4 in p.339

· Input: A set of characters C and their reference framework F.

· Output: A set of distinct bitstrings, each of which represents a character. S.t., the summation of weighted lengths is minimized.

· Algorithm: p.340

· Complexity:
[image: image55.wmf])

log

(

n

n

O

 or more precisely
[image: image56.wmf])

log

(

1

1

å

-

=

O

n

k

k

· Correctness:

· Lemma 1:

· Suppose x and y are the 2 characters w/ the least frequencies. There exists an optimal prefix code in which the bitstrings for x and y have the same length and differ only in the last bit.

· Lemma 2:

· Consider any 2 characters x and y that appear as sibling leaves in an optimal prefix code tree, and let Z be their parent. Then
[image: image57.wmf]}

,

{

y

x

T

-

 represents an optimal code tree for
[image: image58.wmf]}

{

}

,

{

Z

y

x

C

È

-

.

� EMBED Equation.3 ���

� EMBED Equation.3 ���

_1066563632.unknown

_1066567098.unknown

_1066571510.unknown

_1066573011.unknown

_1066573532.unknown

_1066575237.unknown

_1066576605.unknown

_1066916315.unknown

_1066916617.unknown

_1066916939.unknown

_1066916363.unknown

_1066577105.unknown

_1066577103.unknown

_1066575365.unknown

_1066576560.unknown

_1066575289.unknown

_1066574695.unknown

_1066575186.unknown

_1066574409.unknown

_1066573266.unknown

_1066573275.unknown

_1066573057.unknown

_1066572782.unknown

_1066572909.unknown

_1066572974.unknown

_1066572895.unknown

_1066572390.unknown

_1066572517.unknown

_1066572040.unknown

_1066568523.unknown

_1066570712.unknown

_1066571207.unknown

_1066571495.unknown

_1066571206.unknown

_1066568814.unknown

_1066567851.unknown

_1066567965.unknown

_1066567757.unknown

_1066565898.unknown

_1066566846.unknown

_1066567003.unknown

_1066566581.unknown

_1066566697.unknown

_1066566754.unknown

_1066566610.unknown

_1066566546.unknown

_1066564055.unknown

_1066564068.unknown

_1066563696.unknown

_1066554668.unknown

_1066554756.unknown

_1066562251.unknown

_1066562708.unknown

_1066554711.unknown

_1066554492.unknown

_1066554646.unknown

_1066554315.unknown

