Amortized Analysis

· It is used to analyze the average time required to perform each operation involved in a sequence of data structure operation.

· Probability is NOT involved. It analyzes the average performance of each operation in the worst case.

The aggregate method

· Compute the worst-cast time
[image: image1.wmf])

(

n

T

of a sequence of n operations. The amortized cost for each operation is 
[image: image2.wmf]n

n

T

/

)

(

.
[image: image3.wmf]
· Ex. Stack operations


[image: image4.wmf])

,

(

X

S

PUSH


.
[image: image5.wmf])

(

S

POP



[image: image6.wmf])

,

(

K

S

MULTIPOP


· The worst-case time for each operation is O(n) at the first glance.

· However, the worst-case time for the sequence is also O(n), because the total # of push() and pop() is n. therefore, the amortized cost for each stack operation is O(1).

· Ex. Incrementing a binary counter.

     Starting form 0, we increments a binary counter for n times.

     The worst-case time of INCREMENT is O(k) k=logn, 

     The least significant bit  
[image: image7.wmf][

]

0

A

 is flipped   n   times                      
[image: image8.wmf][

]

1

A

 is flipped  
[image: image9.wmf]é

ù

2

/

n

 …..                
[image: image10.wmf][

]

2

A

  …..     
[image: image11.wmf]é

ù

4

/

n

 …...          .                                            
[image: image12.wmf]M

  

                          
[image: image13.wmf]é

ù

n

A

  …..      1   times

    _______________________________________________

                                        2n = 
[image: image14.wmf])

(

n

O


Therefore, the amortized cost of INCREMENT is 
[image: image15.wmf])

1

(

O

.  

The Accounting Method

· Assign different changes to different operations. The difference between a change and actual cost is credit. 

· The total credit in the data structure never becomes negative.

E.g., Stack operations

· Actual cost

· PUSH 1

· POP  1

· MULTIPOP   min(k, s)

· Amortized cost

· PUSH 2

· POP 0

· MULTIPOP 0

· The credit is the number of plates on the stack, which is always non-negative.

E.g., Binary counter

· Actual running time: the number of bits flipped.

· Amortized cost: 

· Set a bit to 1: 2

· Set a bit to 0: 0

· Each INCREMENT sets only one bit to 1. Therefore, its amortized cost is 2.

· The credit is the number of 1’s in the counter, which is never negative.

Ex. 18.2-1, 18.2-3.

The Potential Method

· Define a potential function 
[image: image16.wmf]f

 that maps the target data structure to a value, called potential.

The amortized cost operation 
[image: image17.wmf]i

 is 

   
[image: image18.wmf])

(

)

(

ˆ

1

-

-

+

=

i

i

i

D

D

C

C

f

f

,

   where 
[image: image19.wmf]i

C

 is the cost of 
[image: image20.wmf]i

’th operation.

Therefore


[image: image21.wmf]å

å

=

=

-

+

=

n

i

n

i

n

i

i

D

D

C

C

1

1

0

)

(

)

(

ˆ

f

f

.

To ensure the total amortized cost is an upper bound of the total cost, we required that 
[image: image22.wmf]0

)

(

)

(

0

>

"

³

i

D

D

i

　

f

f


· Ex. Stack Operations

    
[image: image23.wmf]@

)

(

D

f

 # of objects in stack D.

    Thus, 
[image: image24.wmf])

(

0

)

(

0

D

D

f

f

=

³


The amortized cost of PUSH is 


[image: image25.wmf]2

1

1

)

(

)

(

1

=

+

=

-

+

-

i

i

i

D

D

C

f

f

   

The amortized cost of POP is


[image: image26.wmf]0

1

1

)

(

)

(

1

=

-

=

-

+

-

i

i

i

D

D

C

f

f


The amortized cost of MULTIPOP is


[image: image27.wmf]0

'

'

)

(

)

(

1

=

-

=

-

+

-

k

k

D

D

C

i

i

i

f

f


· Ex. Incrementing a binary counter


[image: image28.wmf]@

)

(

D

f

 the # of 1’s in the counter D.

Suppose an INCREMENT resets t bits.

Therefore 
[image: image29.wmf]1

+

=

t

C

i

 # of 1’s becomes 
[image: image30.wmf]1

1

+

-

-

t

b

i


          
[image: image31.wmf]2

)

1

(

1

ˆ

1

1

1

)

(

)

(

1

1

=

-

+

+

=

-

=

-

-

+

-

=

-

-

-

t

t

C

t

b

t

b

D

D

i

i

i

i

i

f

f


Suppose initially there are 
[image: image32.wmf]0

b

 1’s 


[image: image33.wmf]0

0

1

1

2

2

b

b

n

b

b

C

n

n

i

n

n

i

i

+

-

=

+

-

£

å

å

=

=


If  
[image: image34.wmf]n

b

<

0

, the total cost is 
[image: image35.wmf])

(

n

O


NP-Completeness

What is an abstract problem?

A binary relation on a set of problem instances and a set of problem solutions.

Problem instance            solution

· Def. A problem is tractable if there exists an algorithm that solves it in polynomial time in RAM machine

· Def. A decision problem is the one that returns yes/no. If an optimization problem can be solved efficiently, so can the corresponding decision problem.

· F.g The shortest path problem :

   The optimization problem :<G,u,v,
[image: image36.wmf]q

>

   PATH
[image: image37.wmf]º

The decision problem:<G,u,v,k>


[image: image38.wmf]º


Does there exist a path between u and v where length is at most k?

· A computer algorithm that solves an abstract decision problem takes an encoding of a problem instance as input. An encoding is an instance of 
[image: image39.wmf]*

}

1

,

0

{


· We say an algorithm solves a problem in time
[image: image40.wmf]))

(

(

n

T

O

if when given a problem instance 
[image: image41.wmf]i

 of length 
[image: image42.wmf]n

,the algorithm can provide the solution in at most 
[image: image43.wmf]))

(

(

n

T

O

time.

· Def. A problem is polynomial-time solvable if there exists an algorithm to solve it in at most 
[image: image44.wmf])

(

k

n

O

time for some constant 
[image: image45.wmf]k


· We assume binary encoding

· Def A language L is a subset of 
[image: image46.wmf]*

*

}

1

,

0

{

=

å


   
[image: image47.wmf]º

e


empty string


[image: image48.wmf]º

f


empty language

          
[image: image49.wmf]}

:

*

{

*

2

2

1

1

2

1

2

1

*

L

x

and

L

x

x

x

L

L

L

L

Î

Î

=

-

å

=

　

　


· Def A decision problem Q can be represented as a language 
[image: image50.wmf]}

1

)

(

:

{

*

=

å

Î

=

x

Q

x

L


e.g.

   The decision problem PATH has the following corresponding language

    PATH
[image: image51.wmf])

,

(

:

,

,

,

{

E

V

G

k

v

u

G

>

<

is an undirected graph,

           
[image: image52.wmf]0

,

,

³

Î

k

V

v

u

 is an integer and there exists a path from 
[image: image53.wmf]u

 to 
[image: image54.wmf]v

 in 
[image: image55.wmf]G

 where length is at most 
[image: image56.wmf]}

k


· Def. An algorithm 
[image: image57.wmf]A

 accepts a string 
[image: image58.wmf]x

 if 
[image: image59.wmf]1

)

(

=

x

A


    ……………     rejects  …..       
[image: image60.wmf]0

)

(

=

x

A


· Def. The language accepted by an algorithm 
[image: image61.wmf]A

 is the set 
[image: image62.wmf]}

1

)

(

:

{

*

=

å

Î

=

x

A

x

L


· Def. A language
[image: image63.wmf]L

is decided by an algorithm
[image: image64.wmf]A

if every binary string is either accepted or rejected by the algorithm.

· Def. A language
[image: image65.wmf]L

is accepted in polynomial time by an algorithm
[image: image66.wmf]A

 if for any length-n string 
[image: image67.wmf]L

x

Î

, the algorithm accepts 
[image: image68.wmf]x

 in time
[image: image69.wmf])

(

k

n

O

 for some constant 
[image: image70.wmf]k


· Def. P
[image: image71.wmf]:

}

1

,

0

{

{

*

£

º

L

there exists and algorithm 
[image: image72.wmf]A

 that decides 
[image: image73.wmf]L

 in polynomial time
[image: image74.wmf]}


· Ex. Suppose there are n vertices in G, what is the input size of an instance of PATH?

   *assume we use adjacency matrix for representing G.

· E.g. 36.1-2

· E.g. 36.1-7 (complement) p=co-p

· Def. An Hamiltonian cycle of an undirected graph G=(V, E) is a simple cycle that contains each vertex in V, see Fig 36.1(a)

    The formal language:

      HAM-CYCLE=
[image: image75.wmf]G

G

:

{

>

<

 is a Hamiltonian graph
[image: image76.wmf]}


     Brute-force approach:

· Enumerate all possible permutations of V.

· Verify if any permutation a simple cycle.

Let 
[image: image77.wmf]G

n

=

 

The # of vertices is 
[image: image78.wmf])

(

n

O


The # of permutations is 
[image: image79.wmf])

2

(

)!

(

n

n

W

=


Therefore, this algorithm is NOT polynomial time

· Def. A verification algorithm is a 2-argument A, where one argument is an ordinary input string x and the other is a binary string y called certificate. We say A verifies an input string 
[image: image80.wmf]x

 if there exists a certificate 
[image: image81.wmf]y

. s.t. 
[image: image82.wmf]1

)

,

(

=

y

x

A

 The language verified by A is 
[image: image83.wmf]:

}

1

,

0

{

*

Î

=

x

L

there exists 
[image: image84.wmf]　

}

1

,

0

{

Î

y

s.t. 
[image: image85.wmf]}

1

)

,

(

=

y

x

A


Intuition behind the verification algorithm:

A verification algorithm uses a certificate 
[image: image86.wmf]y

 to prove that 
[image: image87.wmf].

L

x

Î

 In HAM-CYCLE, 
[image: image88.wmf]x

 is a graph and 
[image: image89.wmf]y

 is a list of vertices.

· The verification algorithm of HAM-CYCLE takes polynomial time 
[image: image90.wmf])

*

(

n

n

O


· Def. A language 
[image: image91.wmf]NP

L

Î

 iff there exists a polynomial time verification algorithm A and constant C s.t. 
[image: image92.wmf]:

}

1

,

0

{

{

*

Î

=

x

L

there exists a certificate 
[image: image93.wmf]y

 
[image: image94.wmf]x

a

y

w

=

　

/

 s.t. 
[image: image95.wmf]}

1

)

,

(

=

y

x

A


· Theorem 
[image: image96.wmf]

 EMBED Equation.3  [image: image97.wmf]NP

P

£


Proof:  

      Suppose 
[image: image98.wmf]P

L

Î

,and
[image: image99.wmf]A

 is the polynomial time algorithm that decides 
[image: image100.wmf]L


      We can construct another verification 
[image: image101.wmf])

,

(

y

x

A

¢

as follows:

       <1> Execute 
[image: image102.wmf])

(

x

A


       <2> if 
[image: image103.wmf]1

)

(

=

x

A

 return 1, and 
[image: image104.wmf]0

)

(

=

x

A

 return 0

           regardless of the 2’nd parameter 
[image: image105.wmf]y


· Def. Co-NP=
[image: image106.wmf]}

:

{

NP

L

L

Î


· Ex.36.2-1, 36.2-2, 36.2-3, 36.2-8

Reducibility

· Def. A language 
[image: image107.wmf]1

L

 is polynomial-time reducible to a language 
[image: image108.wmf]2

L

denoted 
[image: image109.wmf]2

1

L

L

p

£

, if there exists a polynomial time computable function f: 
[image: image110.wmf]*

*

}

1

,

0

{

}

1

,

0

{

®

s.t. for all 
[image: image111.wmf]2

1

*

)

(

,

}

1

,

0

{

L

x

f

iff

L

x

x

Î

Î

Î

　　

　


The algorithm F that computes f is called the reduction algorithm.

Fig 36.3,36.4

· Def. A language 
[image: image112.wmf]L

 is NP-Complete if 

   1.
[image: image113.wmf]　

NP

L

Î

,and

   2. 
[image: image114.wmf]L

L

p

£

¢

 for every 
[image: image115.wmf]NP

L

Î

¢


· Def. A language 
[image: image116.wmf]L

 is NP-hard if 
[image: image117.wmf]L

L

p

£

¢

 for every 
[image: image118.wmf]NP

L

Î

¢

.]

· If any NP-complete language 
[image: image119.wmf]P

Î

 then 
[image: image120.wmf]NP

P

=


· If we can find the first NP-Complete problem 
[image: image121.wmf]1

L

, then to prove a given problem 
[image: image122.wmf]2

L

 to be a NP-hard, we only need to show 
[image: image123.wmf]2

1

L

L

p

£


· Def. The circuit satisfiability problem (The 1st NP-Complete Given a Boolean circuit composed of problem).AND, OR, and NOT gates, does there exist a truth assignment that causes the output of the circuit to be 1. If so, this circuit is called satisfiable.

· See Fig 36.6

CIRCUIT-SAT={<C>:C is a satisfiable Boolean combinational circuit}

· Lemma CIRCUIT-SAT is NP

Proof. 

We can construct an algorithm A that takes an input circuit C and a truth assignment t (certificate) as the input. Note that the size of truth assignment is no more than linear to the size of c. A was t to compute c.

· Lemma CIRCUIT-SAT is NP-hard

Proof 

Let L be any language in NP. Thus there must exist an algorithm A that verifies L in polynomial time. Suppose algorithm A runs in 
[image: image124.wmf])

(

n

T

 time on length-n input. Obviously 
[image: image125.wmf])

(

)

(

k

n

O

n

T

=

 for some constant 
[image: image126.wmf]k

.We can construct the reduction algorithm F as follows: The input of F include an instance of L, 
[image: image127.wmf]x

,an certificate 
[image: image128.wmf]y

,the encoding of A, the memory and the registers. Besides, let M be the combinational circuit that implements computer hardware for one step execution. Thus 
[image: image129.wmf])

(

/

n

T

w

 sequential concatenation of M, the output of A appears at some place in memory.

    When we are inquired whether an input 
[image: image130.wmf]L

x

Î

 ,we can construct a corresponding circuit as F, 
[image: image131.wmf]/

w

 all input determined except 
[image: image132.wmf]y

. In their case,if F is satisfially, them 
[image: image133.wmf]x

 must be verified by A.

    We next need to show F runs in 
[image: image134.wmf]x

n

n

O

k

=

),

(


F constitutes:


[image: image135.wmf]:

A


constant


[image: image136.wmf])

)

(

/

),

(

:

)

(

:

:

input

n

O

w

n

O

M

n

O

y

n

x

k

k

k

　

　

（


# of 
[image: image137.wmf])

(

:

k

n

O

M


· Lemma:

 If L is a language s.t. 
[image: image138.wmf]L

L

p

£

¢

 for some 
[image: image139.wmf]NPC

L

Î

¢


Then L is NP-hard. Moreover, if  
[image: image140.wmf]NP

L

Î

 then 
[image: image141.wmf]NPC

L

Î


A Boolean formula consists of 

1. Boolean variables

2. Boolean connectives: 
[image: image142.wmf]«

®

Ø

Ù

Ú

,

,

,

,


3. parentheses

A Boolean formula is a satisfiable formula if there exists a truth assignment that satisfies their formula

SAT=
[image: image143.wmf]f

f

:

{

>

<

 is a satisfiable Boolean formula}

· e.g.

 
[image: image144.wmf]2

4

3

1

2

1

))

)

((

)

((

x

x

x

x

x

x

Ø

Ù

Ú

«

Ø

Ø

Ú

®

=

f


 For 
[image: image145.wmf],

1

,

1

,

0

,

0

4

3

2

1

=

=

=

=

x

x

x

x

it is satisfiable 

     Therefore, 
[image: image146.wmf]=

f

SAT

Suppose the formula 
[image: image147.wmf]f

 has 
[image: image148.wmf]n

variables and 
[image: image149.wmf])

(

k

n

O

=

f

 for some 
[image: image150.wmf]k


· Theorem SAT
[image: image151.wmf]Î

NPC

· Lemma 1 SAT
[image: image152.wmf]Î

NP

The verification algorithm uses a truth assignment as the certificate. It verifies the formula by evaluating the expression to 1. This task is easily doable in polynomial time.

· Lemma 2 SAT
[image: image153.wmf]Î

NP-hard

We only need to show CIRCUIT_SAI
[image: image154.wmf]p

£

 SAT

 If seems straight forward to convert to a circuit to a Boolean variable. However , this reduction may not be polynomial due to the shared subformulas. A more clever way has to be porposed.

· Each gate is replaced by output-wire
[image: image155.wmf]«

conjunction

· Each wire is assigned a variable 
[image: image156.wmf]x


See the mapping of Fig 36.8 in P.942

It is easy to see that the circuit C is satisfiable iffthe formula 
[image: image157.wmf]f

 is satisfiable.

_1068719208.unknown

_1068721259.unknown

_1068722713.unknown

_1068723946.unknown

_1068725083.unknown

_1068725655.unknown

_1068726280.unknown

_1068726428.unknown

_1068727066.unknown

_1068727229.unknown

_1068969890.unknown

_1068727115.unknown

_1068726844.unknown

_1068726350.unknown

_1068726417.unknown

_1068726310.unknown

_1068725955.unknown

_1068726238.unknown

_1068726261.unknown

_1068726152.unknown

_1068725728.unknown

_1068725873.unknown

_1068725673.unknown

_1068725469.unknown

_1068725539.unknown

_1068725566.unknown

_1068725500.unknown

_1068725243.unknown

_1068725317.unknown

_1068725112.unknown

_1068724774.unknown

_1068724924.unknown

_1068725032.unknown

_1068724803.unknown

_1068724781.unknown

_1068724633.unknown

_1068724668.unknown

_1068724559.unknown

_1068723405.unknown

_1068723759.unknown

_1068723871.unknown

_1068723901.unknown

_1068723781.unknown

_1068723637.unknown

_1068723708.unknown

_1068723538.unknown

_1068723562.unknown

_1068723415.unknown

_1068723005.unknown

_1068723161.unknown

_1068723280.unknown

_1068723035.unknown

_1068722820.unknown

_1068722958.unknown

_1068722752.unknown

_1068722062.unknown

_1068722484.unknown

_1068722684.unknown

_1068722693.unknown

_1068722564.unknown

_1068722635.unknown

_1068722515.unknown

_1068722435.unknown

_1068722465.unknown

_1068722392.unknown

_1068722408.unknown

_1068722113.unknown

_1068721649.unknown

_1068721956.unknown

_1068722020.unknown

_1068721909.unknown

_1068721939.unknown

_1068721784.unknown

_1068721891.unknown

_1068721767.unknown

_1068721412.unknown

_1068721615.unknown

_1068721366.unknown

_1068720178.unknown

_1068720596.unknown

_1068720757.unknown

_1068721055.unknown

_1068721097.unknown

_1068720782.unknown

_1068720666.unknown

_1068720716.unknown

_1068720628.unknown

_1068720476.unknown

_1068720554.unknown

_1068720585.unknown

_1068720510.unknown

_1068720279.unknown

_1068720310.unknown

_1068720195.unknown

_1068719898.unknown

_1068720025.unknown

_1068720067.unknown

_1068720112.unknown

_1068720054.unknown

_1068719926.unknown

_1068719971.unknown

_1068719911.unknown

_1068719421.unknown

_1068719805.unknown

_1068719847.unknown

_1068719578.unknown

_1068719335.unknown

_1068719369.unknown

_1068719272.unknown

_1068494277.unknown

_1068718762.unknown

_1068719032.unknown

_1068719077.unknown

_1068719174.unknown

_1068719044.unknown

_1068718933.unknown

_1068718997.unknown

_1068718807.unknown

_1068494502.unknown

_1068494652.unknown

_1068718739.unknown

_1068494623.unknown

_1068494335.unknown

_1068494420.unknown

_1068494299.unknown

_1068494316.unknown

_1068491794.unknown

_1068494145.unknown

_1068494207.unknown

_1068494219.unknown

_1068494182.unknown

_1068494113.unknown

_1068494131.unknown

_1068491964.unknown

_1068493189.unknown

_1068493875.unknown

_1068492703.unknown

_1068491945.unknown

_1068491051.unknown

_1068491148.unknown

_1068491339.unknown

_1068491532.unknown

_1068491170.unknown

_1068491115.unknown

_1068490919.unknown

_1068490976.unknown

_1068491013.unknown

_1068490942.unknown

_1068488676.unknown

_1068490185.unknown

_1068489916.unknown

_1068487162.unknown

