Amortized Analysis

· It is used to analyze the average time required to perform each operation involved in a sequence of data structure operation.

· Probability is NOT involved. It analyzes the average performance of each operation in the worst case.

The aggregate method

· Compute the worst-cast time
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· The worst-case time for each operation is O(n) at the first glance.

· However, the worst-case time for the sequence is also O(n), because the total # of push() and pop() is n. therefore, the amortized cost for each stack operation is O(1).

· Ex. Incrementing a binary counter.

     Starting form 0, we increments a binary counter for n times.

     The worst-case time of INCREMENT is O(k) k=logn, 

     The least significant bit  
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Therefore, the amortized cost of INCREMENT is 
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The Accounting Method

· Assign different changes to different operations. The difference between a change and actual cost is credit. 

· The total credit in the data structure never becomes negative.

E.g., Stack operations

· Actual cost

· PUSH 1

· POP  1

· MULTIPOP   min(k, s)

· Amortized cost

· PUSH 2

· POP 0

· MULTIPOP 0

· The credit is the number of plates on the stack, which is always non-negative.

E.g., Binary counter

· Actual running time: the number of bits flipped.

· Amortized cost: 

· Set a bit to 1: 2

· Set a bit to 0: 0

· Each INCREMENT sets only one bit to 1. Therefore, its amortized cost is 2.

· The credit is the number of 1’s in the counter, which is never negative.

Ex. 18.2-1, 18.2-3.

The Potential Method

· Define a potential function 
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 that maps the target data structure to a value, called potential.

The amortized cost operation 
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 is the cost of 
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To ensure the total amortized cost is an upper bound of the total cost, we required that 
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· Ex. Stack Operations
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The amortized cost of PUSH is 


[image: image25.wmf]2

1

1

)

(

)

(

1

=

+

=

-

+

-

i

i

i

D

D

C

f

f

   

The amortized cost of POP is
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The amortized cost of MULTIPOP is
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· Ex. Incrementing a binary counter
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Suppose an INCREMENT resets t bits.

Therefore 
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Suppose initially there are 
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NP-Completeness

What is an abstract problem?

A binary relation on a set of problem instances and a set of problem solutions.

Problem instance            solution

· Def. A problem is tractable if there exists an algorithm that solves it in polynomial time in RAM machine

· Def. A decision problem is the one that returns yes/no. If an optimization problem can be solved efficiently, so can the corresponding decision problem.

· F.g The shortest path problem :

   The optimization problem :<G,u,v,
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The decision problem:<G,u,v,k>
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Does there exist a path between u and v where length is at most k?

· A computer algorithm that solves an abstract decision problem takes an encoding of a problem instance as input. An encoding is an instance of 
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· We say an algorithm solves a problem in time
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if when given a problem instance 
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 of length 
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· Def. A problem is polynomial-time solvable if there exists an algorithm to solve it in at most 
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time for some constant 
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· We assume binary encoding

· Def A language L is a subset of 
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· Def A decision problem Q can be represented as a language 
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e.g.

   The decision problem PATH has the following corresponding language

    PATH
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 is an integer and there exists a path from 
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· Def. An algorithm 
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 accepts a string 
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· Def. The language accepted by an algorithm 
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 is the set 
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· Def. A language
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is decided by an algorithm
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if every binary string is either accepted or rejected by the algorithm.

· Def. A language
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is accepted in polynomial time by an algorithm
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 if for any length-n string 
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· Def. P
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 that decides 
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 in polynomial time
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· Ex. Suppose there are n vertices in G, what is the input size of an instance of PATH?

   *assume we use adjacency matrix for representing G.

· E.g. 36.1-2

· E.g. 36.1-7 (complement) p=co-p

· Def. An Hamiltonian cycle of an undirected graph G=(V, E) is a simple cycle that contains each vertex in V, see Fig 36.1(a)

    The formal language:

      HAM-CYCLE=
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     Brute-force approach:

· Enumerate all possible permutations of V.

· Verify if any permutation a simple cycle.

Let 
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The # of vertices is 
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The # of permutations is 
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Therefore, this algorithm is NOT polynomial time

· Def. A verification algorithm is a 2-argument A, where one argument is an ordinary input string x and the other is a binary string y called certificate. We say A verifies an input string 
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 if there exists a certificate 
[image: image81.wmf]y

. s.t. 
[image: image82.wmf]1

)

,

(

=

y

x

A

 The language verified by A is 
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Intuition behind the verification algorithm:

A verification algorithm uses a certificate 
[image: image86.wmf]y

 to prove that 
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 is a graph and 
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 is a list of vertices.

· The verification algorithm of HAM-CYCLE takes polynomial time 
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· Def. A language 
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 iff there exists a polynomial time verification algorithm A and constant C s.t. 
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· Theorem 
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 EMBED Equation.3  [image: image97.wmf]NP

P

£


Proof:  

      Suppose 
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 is the polynomial time algorithm that decides 
[image: image100.wmf]L


      We can construct another verification 
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       <1> Execute 
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· Def. Co-NP=
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· Ex.36.2-1, 36.2-2, 36.2-3, 36.2-8

Reducibility

· Def. A language 
[image: image107.wmf]1

L

 is polynomial-time reducible to a language 
[image: image108.wmf]2

L

denoted 
[image: image109.wmf]2

1

L

L

p

£

, if there exists a polynomial time computable function f: 
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The algorithm F that computes f is called the reduction algorithm.

Fig 36.3,36.4

· Def. A language 
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· Def. A language 
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 is NP-hard if 
[image: image117.wmf]L

L

p

£

¢

 for every 
[image: image118.wmf]NP

L

Î

¢

.]

· If any NP-complete language 
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· If we can find the first NP-Complete problem 
[image: image121.wmf]1

L

, then to prove a given problem 
[image: image122.wmf]2

L

 to be a NP-hard, we only need to show 
[image: image123.wmf]2

1

L

L

p

£


· Def. The circuit satisfiability problem (The 1st NP-Complete Given a Boolean circuit composed of problem).AND, OR, and NOT gates, does there exist a truth assignment that causes the output of the circuit to be 1. If so, this circuit is called satisfiable.

· See Fig 36.6

CIRCUIT-SAT={<C>:C is a satisfiable Boolean combinational circuit}

· Lemma CIRCUIT-SAT is NP

Proof. 

We can construct an algorithm A that takes an input circuit C and a truth assignment t (certificate) as the input. Note that the size of truth assignment is no more than linear to the size of c. A was t to compute c.

· Lemma CIRCUIT-SAT is NP-hard

Proof 

Let L be any language in NP. Thus there must exist an algorithm A that verifies L in polynomial time. Suppose algorithm A runs in 
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.We can construct the reduction algorithm F as follows: The input of F include an instance of L, 
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 sequential concatenation of M, the output of A appears at some place in memory.

    When we are inquired whether an input 
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 ,we can construct a corresponding circuit as F, 
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 all input determined except 
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. In their case,if F is satisfially, them 
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 must be verified by A.

    We next need to show F runs in 
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· Lemma:

 If L is a language s.t. 
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Then L is NP-hard. Moreover, if  
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A Boolean formula consists of 

1. Boolean variables

2. Boolean connectives: 
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A Boolean formula is a satisfiable formula if there exists a truth assignment that satisfies their formula

SAT=
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     Therefore, 
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Suppose the formula 
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· Theorem SAT
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· Lemma 1 SAT
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The verification algorithm uses a truth assignment as the certificate. It verifies the formula by evaluating the expression to 1. This task is easily doable in polynomial time.

· Lemma 2 SAT
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NP-hard

We only need to show CIRCUIT_SAI
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 If seems straight forward to convert to a circuit to a Boolean variable. However , this reduction may not be polynomial due to the shared subformulas. A more clever way has to be porposed.

· Each gate is replaced by output-wire
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· Each wire is assigned a variable 
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See the mapping of Fig 36.8 in P.942

It is easy to see that the circuit C is satisfiable iffthe formula 
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 is satisfiable.
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