
 
 
 

Managing Personal Processes in the Support of 

Interorganizational Workflows  
 

San-Yih Hwanga , Jiun-Kai Tua, Wan-Chien Leeb 
 

aDepartment of Information Management 
National Sun Yat-Sen University 

Kaohsiung 80424, Taiwan 
 

bDepartment of Computer Science and Engineering 
The Pennsylvania State University 

University Park, PA 16802-6106, USA 
 
 
 
 

 

Sept. 2003 

 

 

 

*Corresponding author: 

Tel.: 886-7-5254700; e-mail: syhwang@mis.nsysu.edu.tw 

 
 



Abstract 

In this paper we exploit a user-centered approach to interorganizational workflows 

and propose the concept of personal processes. A personal process is a coordination 

of personal tasks, each requiring a joint effort between a user and an enacting 

organization to achieve a personal goal. The interoperation between organizations that 

engage in a common business often requires cumbersome administration procedures 

and costly computing infrastructure, and hence we propose that direct 

communications between two enacting organizations are not implemented when 

managing personal processes. A personal process is managed by a personal workflow 

management system (PWFMS) running on a handheld device. When a personal 

process is executed, communication occurs only between the PWFMS and the 

organizations, implemented via Web services. Moreover, since the implementation of 

many personal tasks often requires physical interactions with the associated 

organizations, times and places of execution need to be recorded. To satisfy these 

unique requirements, we formally define a personal process model and design a 

lightweight architecture for systematically supporting the management of personal 

processes. A prototype system has been implemented that includes a PWFMS running 

on a Palm PDA and two subsystems running on fixed networks. All communications 

between components of the prototype are enabled using Web services.  

 
Keywords: Interorganizational workflows, Personal processes, Web services, Process 
integration 
 
 
 



1 Introduction 

The World Wide Web – running on the Internet – has revolutionized the way business 

is conducted. While long-lasting, stable business-partner relationships between 

enterprises remain important, organizations are increasingly seeking to engage parties 

with short-term partnerships (i.e., those with no prior trading relationships) in their 

common business processes in order to increase revenue and to meet customers’ 

requirements in today’s dynamically changing business environment. The term 

business-to-business commerce, abbreviated as B2B, refers to the workflows crossing 

organizational boundaries. Many standards (e.g., Wf-XML [WfXML01] and BPMI 

[BPMI03]), prototypes (e.g., Sagitta2000 [Aals99], CMI [Schu00], Mentor-Lite 

[Weis00], WISE [LASS00], WSFL [Leym01], XLANG [That01], SELF-SERV 

[SBDM02], and BPEL4WS [Curb03]), and products (e.g., RosettaNet [Roset03], 

Biztalk [Bizt03], and ebXML [ebXM03]) have been developed to aid the execution of 

business processes between companies.  

 

The seamless integration of subprocesses executed in different companies requires 

many challenges and technical issues to be addressed, including heterogeneity, 

autonomy, external manageability, adaptability, security, and scalability [Medj03]. 

The many efforts addressing these issues are mostly focusing on factors related to 

enterprise business rather than to personal business. In fact, the concept of B2B and 

its implementation will not only affect business exercises but also our daily life. 

Indeed, taking care of daily personal business often requires interactions with several 

organizations. However, even though XML and Web services have emerged as the de 

facto standard vehicles for communicating across enterprises, the infrastructures for 

integrating business processes across organizations are often heavy duty and hence 



inappropriate for executing personal processes. Thus, in this paper we present a new 

research direction, namely personal process management, and describe related 

research issues and our solutions to them. To the best of our knowledge, this is the 

first reported investigation on personal process management. 

 

To illustrate the concepts and requirements of personal process management, we 

discuss two example processes encountered in daily life: (1) vehicle registration and 

(2) medical insurance reimbursement.  

 
1.1 The vehicle-registration process 

Consider a car owner David who moves from Minnesota to Pennsylvania and needs to 

change his vehicle registration. When planning the relocation, David realizes that he 

can get a better insurance policy in Pennsylvania. However, to cancel the current 

insurance policy in Minnesota, he must send back the old vehicle plate. Thus, in 

addition to registering his car at a Pennsylvania vehicle-registration office, David 

must perform three tasks: (1) obtain a new insurance policy, (2) cancel the old policy, 

and (3) send the car’s old plate back to the Driver and Vehicle Services Division in 

Minnesota (to cancel his car registration). The entire process is shown in Figure 1, 

where a task is represented as an arrow that takes a set of data items (or documents) as 

the input and produces another set of output data items. Both sets of data items are 

represented as circles. Obviously, each task must be initiated by David and then 

processed by the applicable enacting organization. The execution order of tasks has to 

be determined by the input and output data items required for executing the tasks. It is 

quite likely for each task to be a business process executing within an enacting 

organization. However, from the viewpoint of David, if the execution of an internal 

business process does not involve him, the details of the business process can be 



encapsulated and hence he need only be concerned with its input and output. On the 

other hand, if a business process requires an individual to accomplish certain tasks, 

more detailed steps have to be made explicit in the process. For example, the task “get 

policy” may involve several subtasks, each of which must be initiated by David. 

Moreover, different insurance companies may require different sets of input data and 

produce different sets of output data. The process template, as provided by the 

Pennsylvania vehicle-registration office for the convenience of vehicle owners, must 

be flexible enough to incorporate various (sub)processes coming from different 

organizations and meet the specific requirements of diverse users. 

 

- Title
- ID Card

- Insurance
- VIN

Receipt

Cancel old
insurance

Get policy
- Reg proof
- New plate
- Dummy

Register vehicle

Receipt

Send plate
back

Figure 1: Vehicle-registration process 

 

1.2 The medical-insurance-reimbursement process 

This example relates to obtaining reimbursement of medical expenses from the 

Bureau of National Health Insurance (BNHI) in Taiwan. The main task in this process 

is to execute a Reimburse task (see Figure 2), which requires an individual to bring a 

set of documents, namely the insurance certificate, diagnosis certificate, and severe 

disease certificate, to a BNHI agency for a medical expense claim. However, these 

documents may be issued by different organizations, such as the employer that offers 

insurance to the applicant and the hospital that provides medication to the applicant. 



Obtaining a document may in turn require the execution of other processes. For 

example, to receive a diagnosis certificate, many hospitals require the applicant to 

first fill out an application form, have the doctor detail the diagnosis results, and then 

pass the form on to the authority for final stamping (a signature). All these tasks must 

be initiated by the applicant (see Figure 2). Note that obtaining a severe disease 

certificate requires a different process, which is not shown here for brevity. 

 

Diagnose

- ID Card
- Application Form

- Severe Disease Certificate
- Insurance Certificate
- Diagnosis Certificate

ID Card

Diagnosis 
Form-1

Diagnosis 
Form-2

Stamp

Request Proof Check
Reimburse

 

Figure 2: Insurance reimbursement in Taiwan 

The user-coordinated processes described above are termed personal processes 

because they are for personal business. The examples illustrate the need for 

organizations to build systems and extend their IT infrastructure to the support of 

personal process management. In this paper, we employ a suite of system functions – 

collectively termed the personal workflow management system (PWFMS) – for the 

management of personal processes.  

 

Enterprises involved in conventional interorganizational processes must reach some 

sort of agreement in advance in order to achieve automatic interaction between two 

related activities executed in different organizations. The procedure is shown in 

Figure 3(a). However, enabling the interactions for activities involving different 



organizations often requires substantial administration effort and costly investment in 

computing infrastructure. It is therefore unlikely that two unrelated organizations will 

communicate with each other systematically just to meet a customer’s dynamic 

requirement. In contrast, in our proposed personal process model (depicted in Figure 

3(b)) the user serves as an agent for interaction between two tasks performed in 

different organizations. In such a model, the only type of communication involved in 

executing a personal process is between the user and organizations – organizations do 

not talk to each other directly. This model not only eliminates the substantial cost 

associated with enterprise cooperation but also preserves user autonomy. 

 

C1

C2

C3C4

C5

C6C1

C2

C3C4

C5

C6

(a) (b)  

Figure 3: Execution of (a) a conventional business process and (b) a personal process 
 
1.3 Observations 

Some characteristics of personal processes and some requirements for managing them 

are as follows: 

1. Tasks in a personal process require interactions between a user and enacting 

organizations. In fact, many tasks require physical interactions to be performed 

within certain time periods and at certain places. The order in which tasks are 

executed is determined mainly by the executable times, executable places, and 



the data dependency of the tasks. Enterprises may impose many policies and 

procedures that must be followed strictly by their processes, whereas an 

individual seldom imposes rigid rules on the order of execution of his or her 

personal tasks. As a result, the control flow constructs required for enterprise 

processes, such as or-split, and-split, or-join, and and-join, are rarely required for 

personal processes.  

2. Designing a valid personal process is not easy, and it is not surprising for a user 

to execute a task that produces unexpected results or even engage in a totally 

unexpected task. We call such situations exceptions. Rather than rejecting an 

exception, the user may wish to know its impact. 

3. Personal process management can make a user’s life more convenient. However, 

in contrast to commercial workflow management systems that enforce task 

executions, we envisage that a PWFMS would provide only suggestions or 

reminders to the user. Therefore, traditional workflow scheduling issues, which 

address how to determine the mapping between tasks and available resources, do 

not exist in this context. Instead, the query capabilities of a PWFMS that keep a 

user updated about the current personal process status are essential. 

4. To exploit the full strength of personal process management, a PWFMS should 

be available on various platforms. Moreover, to facilitate ubiquitous access of 

personal process management information, it is desirable to implement a 

PWFMS on mobile devices (e.g., PDAs). 

5. For a given user, a personal process may be executed only a small number of 

times (and probably only once in many cases). However, many different users 

may share a common interest in a particular personal process. Therefore, it is 

imperative for an organization to provide personal processes of high interest to 

its customers. In addition, the personal processes of different organizations 



should be integrated in a coherent way. In other words, there is a need to provide 

tools for developing and managing predesigned personal process templates.  

6. While the operation of the organization is beyond the control of the user, it is 

important to notify the user about the status of the process. 

 

1.4 Contributions 

In addressing the above observations and requirements, we develop an innovative 

(personal) process model that comprises executable times, executable places, and task 

input and output data. We also define the correctness of a personal process and 

develop methods for verifying the correctness of a personal process instance 

(corresponding to a personal process design), the completion of process executions, 

and changes to the process. To demonstrate the feasibility of our proposal, a PWFMS 

is designed and prototyped on a handheld device, thereby enabling personal processes 

to be queried at any time and at any place. To facilitate organizations to provide 

predesigned personal process templates to their customers, we develop a personal 

process template provider based on Web services technology. The status of a personal 

process can be tracked and reported to its user. All the components described in the 

architecture have been implemented on a Web-based system and a Palm PDA. The 

implementation status is also reported in this paper. 

 

The rest of the paper is organized as follows. Section 2 formally defines the personal 

process model. Section 3 describes the associated consistency constraints used to 

verify the correctness of a personal process. Section 4 discusses the types of queries a 

PWFMS should provide and the syntax for expressing them. Section 5 describes the 

architecture for facilitating the management of personal processes. Section 6 presents 

our prototype system that is an implementation of the architecture described in 



Section 5. Section 7 reviews the related work in the literature. We conclude the paper 

in Section 8 by summarizing the main results and identifying issues for further study. 

 

2 The personal process model 

In this section, we define the syntax and semantics of personal processes. A personal 

process is comprised of the following components: 

1. A set T of tasks. 

2. A set D of data items. 

3. A set R of threads, each representing a distinct output as a result of executing a 

task. 

4. Several functions that map a task to its name (Φn), the input data set (Φi), the time 

intervals when and places where execution is possible (Φtp), the set of 

participating threads (Φr), the type of nesting (Φnest), the tracking type (Φtype) , and 

the service provider’s URL (Φurl), as defined below:  

A. Φn: T→String, which indicates the name of a task. 

B. Φi: T→2D, which indicates the input data set of a task. 

C. Φr: T→2R, which indicates the set of threads pertaining to a task. 

D. Φtp: T→2Interval×Region , which indicates the set of time intervals when and 

geographical regions where a task can be executed1

E. Φnest: T→Boolean, which indicates whether the task is nested (i.e., a 

subprocess). 

. 

F. Φtrack: T→Boolean, which indicates whether the task can be tracked 

automatically. A task is said to be automatically tracked if the enacting 

                                                 
1 For formal definitions of “interval” and “region”, readers are referred to [Guet00]. However, to ease 
representation, we simply denote a region by its name and use a five-tuple to represent periodically 
executable intervals. 



organization provides a Web service for notifying the execution status of the 

task. A task is tracked manually if it is not automatically tracked. 

G. Φurl: T→String, which indicates the URL of the Web service provided by the 

organization. This is valid only for tasks that can be tracked automatically. 

5. A function Φo: R→2D that maps a thread to its output data set. 

6. A function ∆n: D→String that maps a data item to its associated name. 

 

In addition to the above items, there are attributes that record the execution status of 

processes, tasks, threads, and data; we call these instance attributes. We consider five 

instance attributes Φps, Φs, Φrs, Φc, and ∆s that are associated with processes, tasks, 

threads, or data2

 The seven functions Φi, Φr, Φc, Φtp, Φnest, Φtrack, and Φurl are attributes pertaining 

to tasks, and Φo is an attribute pertaining to threads. A task may comprise several 

threads (represented by Φr), each of which represents a distinct execution outcome 

(represented by Φo). As a result, each thread has its output data set. Of the various 

,. Φps: P → (INITIAL, EXECUTING, SUCCESFUL, FAILED) 

reveals the status of a process, which can be initial, executing, successful, or failed. Φs: 

T → (INITIAL, PREPARED, EXECUTING, LOGICALLY COMPLETED, FAILED, 

PHYSICALLY COMPLETED) reveals the status of a task, which can be initial, 

prepared, executing, logically completed, failed, or physically completed. Φrs: R → 

(UNDECIDED, FAILED, SUCCESFUL) describes the status of a thread. For a given 

task, at most one of its threads could become SUCCESSFUL. Φc: T → R maps a task 

to a completed thread. ∆s: D → (UNAVAILABLE, AVAILABLE) describes the 

availability of a data item. The status of tasks and threads is explained in more detail 

in Section 2.1 and 2.2. 

                                                 
2 Note that a personal process for a given user has at most one instance at any time in most cases. Thus, 
the term process (task, data, or thread) refers to either the definition or the instance – the actual 
meaning should be clear from the context. 



threads of a task, only one (represented by Φc) can eventually succeed. Φtp is the 

attribute that specifies when and where a task can be performed. An interval is 

modeled as a five-tuple <start, cycle, from, to, end>, where start and end indicate the 

effective time and the expiry time, respectively, and cycle, from, and to dictate the 

effective period of a repetitive cycle. The format used for start, end, from, and to is 

“yyyy-mm-dd:hh:mm:ss” and the domain of cycle is {year, month, week, day, hour}. 

For example, the interval of a task that can only be executed between 9 a.m. and 5 

p.m. everyday effective from July 1, 2003 to August 31, 2003 is specified as follows: 

<2003-07-01, “day”, 09:00:00, 17:00:00, 2003-08-31>. 

 

We categorize data items into two types: primitive and processed. Primitive data is not 

produced by any task modeled in the system, and processed data must be generated by 

at least (a thread of) one task. Primitive data could be a data file, a blank form, a 

personal belonging (e.g., ID card or credit card), or anything that can be prepared by 

the user. Processed data are available only when at least one task that is capable of 

producing it is completed. Consider the insurance-reimbursement process shown in 

Figure 2. The Reimburse task takes the following five data items as input: diagnosis 

certificate, insurance certificate, severe disease certificate, ID card, and application 

form; of these, only the diagnosis certificate and insurance certificate are processed 

data items, generated by Stamp and RequestProof, respectively; the other items are 

primitive data. 

 

We also define a source data set Ps and a target data set Pt for correctness verification. 

The source data set is the set of data items that are currently available, formally 

Ps={d∈D: ∆s (d)=AVAILABLE} and a target data set Pt ⊆ D is such that the 

availability of each data item in Pt marks the successful termination of the personal 



process. Consider the vehicle-registration process shown in Figure 1. One may set 

Pt={‘Receipt1’, ‘Receipt2’} as the successful endpoint of the process when both 

receipts are received. We will make use of the two data sets in deciding whether a 

personal process is correct, as explained in Section 3. 

 

Note that the order of task executions in the proposed model is not rigid: tasks are 

associated by their respective attribute values, which may implicitly determine their 

order of execution. For example, if a task T2 requires a data item that can only be 

produced by T1, T2 will not begin executing before T1 terminates.  

 

2.1 Task status 

The transitions between the states of a task can be expressed as a state-transition 

diagram, as depicted in Figure 4. 

PreparedInitial Executing

Logically
Completed

Physically
Completed

Prepare Start

Complete

Done

Reinstantiate

Failed

Not Completed

Figure 4: State-transition diagram of a task 

The “prepare” event indicates that the user has engaged in executing a task. Consider 

the task Register vehicle in the vehicle-registration process as an example. When 

David has come to a vehicle-registration office and applied for the vehicle registration, 

the task is said to be Prepared. The “start” event, signified by an enacting 



organization, indicates that the corresponding business process in the organization is 

enacted. Continuing with the specific example, when the internal vehicle-registration 

process is initiated to process Dave’s vehicle-registration application, the task is said 

to be Executing. The “complete” event – also signified by the enacting organization – 

specifies that this task has been completed successfully (i.e., one of its relevant 

threads becomes SUCCEEDED). When the internal vehicle-registration process is 

completed, the task is said to be Logically completed. However, at this point some 

physical objects (e.g., the new vehicle plate) may not have reached the user. Once all 

output data items have arrived, which marks the event as “done”, the task is said to be 

Physically Completed. However, if for some reason the task is voluntarily or 

involuntarily terminated by the user, an event “not completed” will be issued. In our 

vehicle-registration example, if the vehicle-registration station found that the ID card 

supplied by David has expired, the internal vehicle-registration process will terminate, 

and the task is said to have Failed. In this case the task behaves as if it was never 

executed. If the user decides to reinstantiate the task, it will become Initial and is 

ready to be executed. In the following, when we say that a task t is unexecuted, we 

actually mean that it is in the Initial state. 

 

2.2 Task output thread 

The output of each task can be expressed as a group of threads, as shown in Figure 5. 

Initially, all threads are in the UNDECIDED state. When the task is Logically 

completed, exactly one thread enters the SUCCEEDED state while all the other 

threads are in the FAILED state. 



 

Figure 5: Task threads 

 

2.3 Metaschema of personal processes 

Based on the above definitions, we use a class diagram (shown in Figure 6) to 

represent its metaschema. A personal process comprises at least one task. Each task 

consists of at least one thread, a set of input data items, and at least one 

interval–region pair. A thread represents a possible execution outcome which is 

modeled as a set of output data items. The interval–region set contains the time 

intervals when and locations where the task can be executed. The attributes of each 

class are listed in Table 1. 

Personal Process

Task

Data

Interval
(time)

Region

Thread

1

*

1

**

1

* 1
1

*

1

*

Interval-Region
*1

 

Figure 6: Metaschema of personal processes 

 

Group 

Thread L 

 
 

Φi 
 

ΦoL 

Φo2 

Φo1 

Thread 2 

Thread 1 



Table 1: Attributes of classes in the metaschema 

Class Attribute Type 

Personal process 
Name String 
Status INITIAL, EXECUTING, SUCCESS, or FAILED 
Provider String  

Task 

Name String 
Priority (low)1, 2, 3, 4, or 5(high) 

Status 
INITIAL, PREPARED, EXECUTING, 
LOGICALLY COMPLETED, FAILED, or 
PHYSICALLY COMPLETED 

Nesting Yes (nested) or No (atomic) 
Tracking Yes (tracked automatically) or No (tracked 

manually) 
URL String 
Description String 

Thread 
Name String 
Status UNDECIDED, SUCCEEDED, or FAILED 

Data 

Name String 
Status AVAILABLE or UNAVAILABLE 
Type 
(for task) 

PRIMITIVE or PROCESSED 

Interval–region 
Interval 
(time) 

Start Date format “yyyy-mm-dd:hh:mm:ss” 
End Date format “yyyy-mm-dd:hh:mm:ss” 
From Date format “yyyy-mm-dd:hh:mm:ss” 
To Date format “yyyy-mm-dd:hh:mm:ss” 
Cycle year, month, week, day, or hour 

Region String 

 

3 Constraints on personal processes 

As a formal process model, the personal process model contains several constraints 

that limit the attribute values that can be specified on tasks, as defined below.  

 
Definition 1: A task t1 is said to temporally precede another task t2 (denoted 21 tt t ) 
if t1 must be executed before t2. Formally,  21 tt t  if 



))((min_))((max_ 21 ttimettime tptp Φ≤Φ , where max_time (min_time) is a function 

that returns the maximum (minimum) time of the intervals specified in the 
parameters. 
 
Definition 2: A task t2 is said to depend on another task t1 in terms of data (denoted 

21 tt d ) if at least one of the input data items required by t2 can only be generated by 
t1. Formally, 21 tt d  if 

φ≠Φ∉Φ∈∀≠∈∀Φ∈Φ∈∃Φ∈ ))}(),(,,()),(),((),(:{ 112 rdtrttTtrdtrtdd orori . 

Definition 3: A task t2 is said to strictly depend on another task t1 (denoted 21 tt s ) if 
either 21 tt t  or 21 tt d . 
 

Definition 4: Given a set of data items D1 and another set of data items D2, we say D1 

induces D2 via a set of tasks Ti if there exists a partial order   on Ti such that 

1.  ⊆s  and  

2. there exists a thread rj for each task tj in Ti such that each input data item of tj is 

either available or can be generated by some task preceding tj in  . That is, 

))}(,,(,:{)( rdtttrDddPt ojsji Φ∈∈∃∈∪⊆Φ  . 

In this case, we also say that Ti induces D2 from D1. 

 

The first condition in Definition 4 confines the partial order to be the superset of the 

strict dependency s , since the strict dependency must be followed rigidly. The 

second condition states that the output of all tasks that precede a task tj as well as the 

currently available data items will allow tj to be executed (in terms of its required 

input data). 

 

Definition 5: Given a set of data items D1 and another set of data items D2, we say D2 

is inducible from D1 if there exists a set of tasks Ti such that D1 induces D2 via Ti. 

 



3.1 Process-aliveness constraint 

Definition 6: (Process aliveness) A personal process is said to be alive (or preserve 

the process-aliveness constraint) if the target data set Pt is inducible from the source 

data set Ps. 

 

The process-aliveness constraint ensures that there is a chance that all the desired data 

items will become available. When the process-aliveness constraint is violated, it 

makes no sense to continue executing the process. 

 

3.2 Task-aliveness constraint 

Even if a process is alive, some of its unexecuted tasks could be redundant and will 

not or should not be executed. The task-aliveness constraint is proposed to ensure that 

task redundancy does not exist. 

 

Definition 7: A task t is said to potentially contribute to a data item d if there exists a 

sequence t1, t2, …, tn of unexecuted tasks such that the following conditions hold: 

1. t1 = t, i.e., the task sequence starts with t. 

2. jsi ttijni ¬<≤∀<<∀ ,1,1 , i.e., a task ti cannot strictly follow any preceding task 

tj. 

3. φ≠Φ∩ΦΦ∈∃<≤∀ + )()(),(,1 1iioir trtrni , i.e., the output data item of some 

thread in a task ti can be consumed by the next task ti+1. 

4. )(),( rdtr onr Φ∈Φ∈∃ , i.e., some thread in the last task tn is capable of generating 

d. 

Saying that a task t potentially contributes to a data item d means that the execution of 

t may lead to d becoming available in the future.  

 



Definition 8: A task t is said to be alive if )(tiΦ  is inducible from Ps and t 

potentially contributes to at least one data item in Pt. 

 

When a task is alive it has the chance to be executed, and its execution may contribute 

to the availability of at least one data item in the target data set. However, even if each 

task is alive, there is still a possibility that some redundancy exists in the specification 

of a personal process.  

 

3.3 Acyclic-dependency constraints 

Definition 9: (Acyclic dependency) A personal process is said to preserve the 

acyclic-dependency constraint if the graph (T, s ) does not contain a cycle. In other 

words, the task dependency s  forms a partial order set on tasks. 

 

The acyclic-dependency constraint is essential because not all the tasks involved in 

the cycle of (T, s ) can be executed, and thus some tasks are redundant. 

 

Definition 10: (Task aliveness) A personal process is said to satisfy task aliveness if 

every constituent task is alive and the acyclic-dependency constraint is preserved. 

 

Note that it is sensible to continue executing a personal process only when the process 

is alive. Furthermore, if a personal process does not preserve task aliveness, some 

tasks become redundant and hence do not need to be executed.  

 

3.4 Correct personal processes 

Definition 11: (Correctness) A personal process (instance) is said to be correct if the 

task-aliveness constraint and the process-aliveness constraint are both satisfied. 



 

A personal process can be incorrect for the following reasons: 

1. Some tasks become obsolete (and should be removed). 

2. The user may have made some mistakes in designing or changing the personal 

process. 

3. The personal process was so badly executed that it makes no sense to continue 

executing the remaining unexecuted tasks. 

 

In any of the above cases, some action may have to be taken to fix the personal 

process. 

 

Please note that a personal process may be correct at design time but become incorrect 

when a task completes (as the result of executing an inappropriate task thread) or 

when the personal process undergoes some dynamic change. Therefore, the 

correctness of a personal process p should be checked at all of the following time 

points: 

1. When p is initially designed. 

2. When a task in p is completed. 

3. When the definition of p is changed dynamically (e.g., by adding, deleting, or 

modifying a constituent task). 

 

Task aliveness can be verified through breadth first search (BFS) for three times (one 

starts from Ps to verify it Ps reaches all unexecuted tasks, another starts from Pt by 

following the reverse edges to check if all unexecuted tasks can be passed, the other is 

performed on the data dependency graph to detect cycles). Process aliveness detection 

may be performed through BFS from Ps. However, since each task may comprise 



multiple threads, the running time of BFS is exponentially proportional to the number 

of tasks. This suggests that checking the correctness of a personal process requires 

substantial computing power. As described in Section 4, when the PWFMS executes 

on a handheld device it is not possible to validate the entire personal process each 

time a task is completed. However, as shown by the following lemmas, in many cases 

there is no need to perform the personal process validation from scratch. 

 

Lemma 1: Assume a personal process p satisfies the acyclic-dependency constraint 

before a task t is completed. p still satisfies the acyclic-dependency constraint after t is 

completed. 

Proof: Suppose p violates the acyclic-dependency constraint after executing t and 

there exists a cycle in the graph (T, s ). For each edge (ti, tj) in the cycle, either 

jti tt   or jdi tt   must hold. Before t is executed, fewer data items are available 

and thus jti tt   or jdi tt   must still hold. In other words, the cycle exists before t 

is executed. A contradiction! 

 

From Lemma 1, we know that the acyclic-dependency constraint only needs to be 

verified once when a personal process is designed, provided the definition of personal 

process has not since been modified.  

 

Lemma 2: Assume a personal process p is correct before a task t is completed. If t 

contains only one thread, then p is still correct after t is completed. 

Proof: This is obvious. 

 

Lemma 3: Assume a personal process p is correct before a task t is completed. Let U 



be the set of unavailable data items that can be produced by some failed threads of t 

(i.e., 

))}(,)(),((,)(,:{ rdFAILEDrtrEUNAVAILABLdDddU orsrs Φ∈=ΦΦ∈∃=∆∈= ) 

after t is completed. If there does not exist any data item d in U such that d is an input 

data item of some unexecuted task in T (i.e., 

))(,)(,(, tdINITIALtTtUd is Φ∉=Φ∈∀∈∀ ), then p is still correct.  

Proof: Since p is correct before t is executed, the task-aliveness and process-aliveness 

criteria must both hold. In other words, the following three conditions must be true: 

1. There exists a set of unexecuted tasks T1 that induces Pt from Ps. 

2. For each unexecuted task t, there exists a set of unexecuted tasks T2 that induces 

)(tiΦ  from Ps. 

3. For each unexecuted task t, there exists an unexecuted task sequence T3 that 

leads t to some data item in Pt.  

Since all the failed threads in t do not contribute to the availability of any input data 

items of any unexecuted task, the following conditions will hold: 

1. T1–{t} induces Pt from Ps. 

2. For each unexecuted task t’, T2–{t} induces )'(tiΦ  from Ps. 

3. For each unexecuted task t’, T3–{t} leads t’to some data item in Pt.  

Thus, p is correct after t is executed. 

 

4 Querying a personal process 

We adopt first-order predicate calculus [BM77] as the formal query language for 

querying personal processes. For example, to retrieve the names of tasks in the 

personal process “medical insurance reimbursement” (shown in Figure 2) with a 



given data item “insurance certificate” as part of their input, we can use the following 

query: 

 
Query scenario 1 

{t.name | TASK(t), (t.process_name = ‘medical insurance reimbursement’), 
(∃ d ∈ t.input, (d.name = ‘insurance certificate’))}; 

 

4.1 Predicates definition 

To facilitate the users in expressing queries, we further define the following predicates 

that are frequently used in the context of personal processes: 

 
 OVERLAP_TIME_PLACE(t1, t2). This returns TRUE if tasks t1 and t2 can be 

coexecuted at a certain time and at a certain place. 
 POSSIBLE_OUTPUT(t, d). This returns TRUE if one of the threads in t 

produces the data item d.  
 TASKSET_INPUT(d, t1, t2, …, tk). This returns TRUE if d appears in the input 

data set of at least one task in {t1, t2, …, tk} but not in the output of any thread of 
tasks in {t1, t2, …, tk}. 

 

4.2 Sample queries 

Some queries and the corresponding expressions from first-order predicate calculus 

are as follows: 

 Query scenario 2. Find the names of tasks that can be executed after both 

“request proof” and “stamp” are completed in the “medical insurance 

reimbursement” process. This type of queries is used when the user is planning to 

perform some tasks and would like to know what he or she can do next. The 

corresponding query expression is shown below: 

{t.name | TASK(t), (t.process.name = ‘medical insurance reimbursement’), (∀d 



∈ t.input, ((d.status = ‘available’) or (∀t1 , TASK(t1), (t1.name = ‘request proof’), 

POSSIBLE_OUTPUT(t1 , d)) or (∀t2, TASK(t2), (t2.name = ‘stamp’) and 

POSSIBLE_OUTPUT(t2 , d))))}; 

 Query scenario 3. Find a set of tasks whose input data are available and can be 

coexecuted with “diagnose” in terms of time and place in the reimbursement 

process. This type of query is used when the user has planned to perform some 

task and would like to know what tasks can be potentially coexecuted at the same 

time and at the same place. The corresponding query expression is shown below: 

{t.name | TASK(t) , (t.process.name = ‘medical insurance reimbursement’), (∀d 

∈ t.input, (∃ t1 , TASK(t1), (t1.name = ‘diagnose’), (d.status = ‘available’ or 

POSSIBLE_OUTPUT(t1 , d))), OVERLAP_TIME_PLACE(t , t1))}; 

 Query scenario 4. Find the set of tasks that are ready to be executed at the current 

place and at the current time. This query might be raised frequently by a mobile 

user who likes to do know what he or she can do at any particular moment. The 

corresponding query expression is shown below (note that CURRENT is a 

system-defined dummy task that has the current time and the current place as its 

attribute values): 

{t.name | TASK(t), (t.process.name = ‘medical insurance reimbursement’), (∀d 

∈ t.input, (d.status = ‘available’)), (OVERLAP_TIME_PLACE (t , 

CURRENT))}; 

 Query scenario 5. Find the set of data that are required to complete tasks “request 

proof”, “diagnose”, and “stamp”. This type of query is especially useful when a 

user has decided to performed several task and would like to know what data 

items are required: 

{d.name | DATA(d), (∃t1 , TASK(t1), (t1.name = ‘request proof’), (∃t2 , TASK(t2), 

(t2.name = ‘diagnose’), (∃t3, TASK(t3), (t3.name = ‘stamp’), 



TASKSET_INPUT(d, t1, t2, t3)))) }; 

 

As can be seen, first-order predicate calculus represents a powerful method for 

querying definition and execution of a personal process. Therefore, any query 

language that fully implements first-order predicate calculus on objects with 

composite, multivalue attributes and allows user-defined functions can be used for 

querying personal processes. One such a language is SQL3 [EM99]. However, this 

paper focuses on proposing the concepts of personal process management and 

demonstrating the feasibility, and hence a full-fledged query language has not been 

implemented. Instead, in our prototype we enumerate several frequently used queries 

and implement them as parameterized queries. To execute these queries, a user only 

needs to click on some items or fill in forms that prompt the required parameters. The 

prototype is described in Section 6. 

 

5 The system architecture 

The objective of the personal process management system is to facilitate users to 

coordinate and track personal tasks with assistance from various organizations. To 

meet this objective, various functions have to be provided to support the design, 

execution, and query formulation of a personal process. Our proposed architecture 

involves three types of component: the template providers, the service providers, and 

the PWFMSs. The functions of each component are described below: 

 

1. The template provider provides predesigned personal process templates for 

users with various backgrounds and requirements. After composing a particular 

template, a user can download the template using his or her handheld device 



running a PWFMS. 

2. The service provider is provided by an organization that executes users’ 

personal tasks. Some of the tasks can be organized as a subprocess (e.g., the 

“diagnose” subprocess described in the insurance-reimbursement process), which 

is used by a template provider to compose a larger personal process. It also 

allows the status of a task to be tracked. Both personal subprocess publishing and 

task status tracking are conducted via Web services. 

3. The PWFMS executes on a handheld device to manage personal processes. It is 

capable of downloading personal processes from template providers and interacts 

with service providers to keep track of the execution status of tasks. In addition, 

it also provides interfaces for a user to change task execution status and to place 

queries. 

 

The interactions between the three types of components are depicted in Figure 7. A 

user first makes a personal process from a template. To tailor-make a personal process, 

the user is free to choose the desired personal subprocesses available from different 

service providers. The user then downloads the completed personal process to the 

PWFMS and may begin executing the constituent tasks. Once an (automatically 

tracked) task is executed, the associated service provider will notify the PWFMS of its 

execution status. All the interactions between different components are conducted via 

Web services. Note that Figure 7 shows a logical architecture. In practice, the 

template provider and the service provider can be of the same organization and 

integrated into a single system. Figure 8 shows the Web services that are implemented 

between components. Note that we do not consider user-authentication and security 

issues in this paper: these are important components in a real system, but they are 

peripheral to our design and ignored in this architecture for simplicity. 



Template Provider

Service 
Provider

Personal 
Workflow 

Management 
System

Legacy 
Systems

System boundary Web Service Interface Service Flow

End User

 

Figure 7: Logical architecture of the entire system 
 

 

Service 
Provider

PWFMS

Template
ProvidergetProcess()

   - process name

getStatus()
   - user identification,
   - a set of tasks

getTemplate()
   - user identification,
   - template name

listProcess()

listTemplate()
   - user identification,

 
Figure 8: Interaction methods between components 

 

5.1 Components and interfaces 

In this section we provide a detailed description of the functions of each component 

(see Figure 9). Each component also provides several Web services for interacting 

with the other components depicted in Figure 8. 

 



Personal Process Manager

WFMS

Service Provider

Web 
Services

Template Provider

Web 
ServicesTemplate 

Manager

Validation 
Agent

Personalized
Template
BuilderRepository

Validation 
Agent

Process 
Manager

Repository

Query 
Processor

Repository

Web-services   
agent

User-interface

Personal Workflow 
Management System

Subsystem boundary Web Interface Service Flow End User

Template
Designer

Process
Designer

Process 
Designer

Template 
Designer

function

Service
Executor

Validation 
Agent

Maintenance

Figure 9: Subcomponents of the architecture 
 
5.1.1 The service provider 

An organization may install a service provider to facilitate the deployment and 

execution of tasks in personal processes. This service provider has two functions: (1) 

to provide a collection of (partial) personal processes, each consisting of a set of tasks 

for realizing a service, and (2) to monitor the execution status of tasks. To fulfill these 

two objectives, the service provider has three interface modules (enclosed within 

dotted circles in Figure 9): (1) the process designer, (2) the maintenance services, and 

(3) the Web services. The process-designer module provides a user interface that 

enables the user to create new personal processes; the maintenance module provides a 

user interface that assists a service executor in managing an executing task; and the 

Web-service module handles a set of published Web services, including listProcess, 



getProcess, and getStatus (shown in Figure 8). An invocation of a Web service 

involves the interchange of two XML documents (one for service request and the 

other for service response). The content of the two XML documents required for 

executing each Web service is as follows: 

 
1. listProcess: return the names of all personal processes stored in the service 

provider. 
Request: null 
<request> 
 <process>ALL</process> 
</request> 
Response: names of available processes, whose XML format is shown below: 

<response> 
 <process>processName1</process> 
 <process>processName2</process> 
</response> 

2. getProcess: return the definition of a given personal process. 
Request: a personal process name 
<request> 
 <process> processName1</process> 
</request> 
Response: definition of the process 
<process name=" processName1"> 
<task name="task1" priority="3" type="atomic" status="Initial" 
description="test" provider="company A" 
URL="http://cs.mis.nsysu.edu.tw/cgi-bin/service"> 
<place>school</place> 
<time type="d" start="2003-05-05" end="2003-05-10"></time> 
<inputdata type="primitive" status="unavailable">id1</inputdata> 
<outputdata thread="success" status="unavailable">od1</outputdata> 
</task> 
<task…>…</task> 
… 
</process> 

3. getStatus: return the execution status of a task. 
Request: process name and a set of task names 



<request> 
 <process name=ProcessName1></process> 
 <task>name1</task> 
<task>name2</task> 
</request> 
Response: the status (and the succeeded thread name, if any,) of each task 
<response> 
 <task name="name1" status="Logically-Completed" 
thread=”success”></task> 
 <task name="name2" status="Executing"></task> 
</response> 

 

The process manager is the core module of the service provider. It maintains the 

definition and monitors the executions of instances of each published personal process. 

In an organization that employs a workflow management system to provide its 

services, each task in a personal process may be regarded as a workflow, and the 

process manager has to interact with the workflow management system in order to 

update the task status. The definitions of personal processes as well as the execution 

status of each task instance are stored in the “repository”. The validation-agent 

module is responsible for checking the correctness of a personal process, as described 

in Section 3.  

 
5.1.2 The template provider 

The template provider allows designers to build personal process templates that 

comprise subprocesses (so-called nested tasks) and/or atomic tasks published by 

various service providers. It also allows users to customize a given template and to 

download the customized template to its PWFMS. Moreover, it provides three 

interface modules (enclosed within dotted circles in Figure 9). The template designer 

allows a designer to create new templates. Typically, a designer defines a personal 

process and creates several templates for it, each suited to a customer type with a 



distinct background or requirement. The personalized-template-builder module allows 

a user to select a template that meets his personal requirements. Users interact with 

this module by providing their personal information as well as their requirements 

([HC03] details these interactions). Note that the selected personal process templates 

will be stored in the repository for later access (e.g., downloading). The Web-service 

module handles a set of published Web services, namely listTemplate and getTemplate. 

Their functions and the invocation formats are as follows: 

 

1. listTemplate: return a set of personal process templates selected by a given user. 
Request: user’s identifier (name) 
<request> 
 <user>name1</user> 
</request> 
Response: a set of names of customized personal process templates 

<response> 
 <template>template1</template> 
 <template>template2</template> 
</response> 

2. getTemplate:  
Request: requires user identifier (name) and names of personal process 
templates 
<request> 
 <user>name1</user> 
 <template>template1</template> 
</request> 
Response: a personal process (customized template) 
<template name="template1"> 
<task name="task1" priority="3" type="atomic" status="Initial" 
description="test" provider="company A" 
URL="http://cs.mis.nsysu.edu.tw/cgi-bin/service"> 
<place>school</place> 
<time type="d" start="2003-05-05" end="2003-05-10"></time> 
<inputdata type="primitive" status="unavailable">id1</inputdata> 
 <outputdata thread="success" status="unavailable">od1</outputdata> 



</task> 
</template> 

 

The validation agent is responsible for validating the correctness of a template 

constructed by the template designer, as described in the service provider. 

 

5.1.3 Personal workflow management system 

The PWFMS is the focal point of the entire architecture: it enables users to create and 

obtain a new personal process (from the template provider), to manage existing 

personal processes, and to interact with the service providers of organizations that are 

responsible for executing tasks. The Web-services agent module is responsible for 

interacting with the template provider (e.g., for retrieving and downloading personal 

processes by issuing listTemplate and getTemplate Web services, respectively) and 

with the service provider (e.g., for getting the execution status of a task by issuing the 

getTaskStatus Web service). 

 

The personal process manager is the core module of the PWFMS that provides its 

main functionality, including process/task status control and task invocation control. 

When the definition of a personal process is modified or the status of a task is 

changed (either by the user or by the Web service getTaskStatus), the correctness of 

the resultant personal process has to be checked by the validation agent. The 

query-processor module supports basic queries as well as frequently used queries, as 

described in Section 4. 

 

As mentioned in Section 1, an important goal of managing personal processes is to 

provide reminders or suggestions to a mobile user, rather than to enforce task 

executions as does a commercial workflow management system. Thus, while the 



PWFMS may automatically update the status of an executing task via Web services, a 

physical task must be invoked by the user (e.g., hand in the required papers when 

applying for a certain document). Once this is done, the organization that executes the 

task will send the update of the task status to the PWFMS via Web services (e.g., 

executing, logically completed, or failed). The completion of a task may in turn ready 

another task for execution. The user of the PWFMS may use the query interface to 

decide which task to engage next. The above procedure is performed iteratively. 

 

5.2 Workflow behavior of a personal process 

Figure 10 shows a UML activity diagram that describes the workflow behavior of a 

personal process. When a personal process is started, this will set the process status as 

“executing” and the status of primitive input data items as “available”. The user may 

then place a query to choose the set of unexecuted tasks, among which one task is 

chosen for execution. Sometime after a task begins executing, a task status update 

event may arrive. This event may be either initiated manually by the user (for a 

manually tracked task) or automatically by an organization via Web services (for an 

automatically tracked task). The PWFMS then updates the corresponding task status 

accordingly. If a task status is changed to “logically completed”, the correctness of the 

resultant personal process has to be reevaluated. If it turns out that the personal 

process is incorrect, and the user does not want to update the definition of the personal 

process, the process is designated as “failed”. Conversely, the user may update the 

personal process definition and have the PWFMS recheck its correctness. If a task 

status is changed to “failed”, the user will examine the task and decide whether or not 

to reset its status to “initial” for possible reexecution. When the process is correct and 

all the target data items are available, the personal process is considered to have 



succeeded. 

 

Set process status to "Executing"

user chooses task

Examine task

Validate process correctnesss

Set status of primitive data item to "available"

Check Availability of target data

Set the task status List prepared tasks

[Task status update]

[incorrect]

choose then perform a task

Update process

Process fails Process succeeds

[all available]
[not all available]

[correct]

[updated]

[no update]

[status is failed]

[status is initial]

[failed] [logically 
completed]

Figure 10: Activity diagram of a personal process 

 

6 The prototype 

We implemented the three required components to prove our concept of the proposed 

personal process model and the underlying architecture: the service provider, the 



template provider, and the PWFMS. To facilitate the implementation, we have 

simplified the proposed model and accordingly also the architecture. First, time and 

location are separate attributes in our implementation, whereas in our model they are 

integrated as a composite, multivalued attribute. Second, due to the lack of 

positioning devices and services available to our environment, we ignore 

position-related query statements (therefore, querying which tasks can be executed at 

a user’s current position will simply return all the tasks available).  

 

Both the service provider and the template provider run on servers located on a fixed 

network. The service provider is implemented using Perl and executes on an Apache 

Web server. The template provider is a Web-based system using Apache as the Web 

server and MySQL as the underlying DBMS. PHP is used to implement the Web 

interface and the Web services. The PWFMS executes on handheld devices and is 

implemented using J2ME-MIDP (Java 2 Mobile Information Device Profile) as the 

development tool. The Appendix shows several screenshots of the prototype system, 

detailed descriptions of which are provided in Sections 6.1 and 6.2. 

 

6.1 The template provider system 

When a user logs onto the template provider, he or she is prompted with a set of 

available templates and a set of customized templates that he or she has built 

previously. Figure A-1 shows a screenshot of the template provider that appears when 

a user logs on. The upper screen shows that two personal process templates 

(“reimbursement” and “vehicleRegistration”) are available to the user, and the lower 

screen shows that the user has constructed one template (“skin”). When the user 

chooses to customize a template, he or she will be prompted to choose the service 



provider for each partial personal process in the template. Figure A-2 shows a 

screenshot for when the user chooses to customize the template “reimbursement”, in 

which there are two tasks, namely “insurance certificate” and “diagnosis certificate”, 

each of which can be provided by two service providers. The user may then further 

customize the template by following the system guide (see Figure A-3). For example, 

the user can add new tasks (see Figure A-4) or modify existing tasks (see Figure A-5). 

After the customization, the user can define the target data set and verify the 

correctness of the personal process (see Figure A-6). The system also provides a 

utility for the user to view the data dependency between tasks, i.e., the relation d  

described in Section 3 (see Figure A-7). Finally, the user can export the template so 

that it can be downloaded to the PWFMS (see Figure A-8). An exported personal 

process template can be retrieved by a PWFMS via the Web service interface 

(explained in Section 5.1.2). 

 

6.2 Personal workflow management system 

The PWFMS can run on a handheld device. It assists users in the management of 

personal processes by allowing them to download a personal process template (from 

the template provider), to browse the definition, to place queries, and to automatically 

track the status of an executing task (from a service provider). Figure A-9(a) shows 

the main menu of the PWFMS. When the user chooses “select process”, a list of 

personal processes in the PWFMS is displayed (see Figure A-9(b)). When the user 

chooses one personal process from the list, the PWFMS will check the status of each 

executing task of that personal process by invoking the appropriate Web services. If 

the status of any task is updated (see Figure A-10(a)), the correctness of the personal 

process is validated automatically. A warning message is displayed if the PWFMS 



finds that the personal process is incorrect. The user can browse and modify a 

personal task by clicking on it (see Figure A-10(b)). 

 

When the user wishes to download a new personal process from the template provider, 

he or she must supply the user ID, template ID, and URL (see Figure A-11(a)). The 

PWFMS will automatically invoke the corresponding Web service to download the 

definition of the customized personal process from the template provider.  

 

The PWFMS provides several parameterized functions for manipulating the tasks of a 

personal process (by clicking the left anchor on the “task list”), as shown in Figure 

A-11(b). These functions include the placement of basic queries and frequently used 

queries as described in Section 4, and other maintenance functions. These functions 

are described below: 

 

1. List available tasks. This displays the names of the tasks whose input data items 

have the status “available”. 

2. List unexecuted tasks. This displays the names of the tasks whose status is 

“initial”. 

3. List executing tasks. This displays the names of the tasks whose status is 

“executing”. 

4. List all tasks. This displays the names of all tasks. 

5. Task status change. This function allows the user to explicitly specify the 

execution status of tasks. Users require this function for updating the status of 

manually tracked tasks. Although the execution status of automatically tracked 

tasks will be updated automatically via Web services, the user may sometimes 

need to use this function to change their execution status (e.g., from “logically 



completed” to “physically completed”, or from “failed” to “initial”). When the 

task status is changed to “logically completed” and there is more than one thread, 

the PWFMS will guide the user to select a succeeded thread. 

6. Task required data. This allows the user to select a set of tasks and list the 

aggregated input data items of these tasks. 

7. Task related data. This displays the names of tasks that can be executed after a 

given set of tasks is completed (query scenario 2 in Section 4.2). 

8. Co-executed tasks. This displays the names of the tasks whose input data are 

available and can be coexecuted with a given task in terms of time and place 

(query scenario 3 in Section 4.2). 

9. Available tasks (time). This displays the names of the tasks that can be executed 

immediately (query scenario 4 in Section 4.2). 

10. List input data. This displays the names of the data items that are required to 

complete a given set of tasks (query scenario 5 in Section 4.2). An example of 

the output is shown in Figure A-12(a).  

11. Query date. This displays the names of tasks that can be executed on a specific 

date or within a date interval (see Figure A-12(b)). 

12. Task detail. This displays the detailed information of a selected task. 

 

Finally, the PWFMS provides the following functions for manipulating data items (by 

clicking the left anchor on “show data list”), as shown in Figure A-13: 

 

1. List available data. This lists all available data items. 

2. List unavailable data. This lists all unavailable data items. 

3. List all data. This lists all data items. 

4. Status change to available. This changes the status of a given data item to 



“available”. 

5. Status change to unavailable. This changes the status of a given data item to 

“unavailable”. 

6. Target data set. This allows the user to manipulate the target data items. 

7. Data related tasks. This shows the names of the tasks that require a given data 

item as input (query scenario 1 in Section 4). 

 

7 Related work 

The development of workflow management systems aimed at automating business 

processes within an enterprise began in the early 1990s and has now reached a mature 

stage. Many proprietary workflow management systems (e.g., IBM’s Lotus Workflow 

[Lotu03] and Ultimus’s Workflow Suite [Ulti03]) and some ERP systems (e.g., SAP 

[SAP03] and PeopleSoft [Peop03]) capable of managing intraorganizational business 

processes are available on the market. The shift in the focus of research and 

development from intra- to interorganizational workflow began in the late 1990s and 

has resulted in the emergence of many research types (e.g., CMI [Schu00], 

Mentor-Lite [Weis00], Sagitta2000 [Aals99], SELF-SERV [SBDM02], and WISE 

[LASS00]) and products (e.g., RosettaNet [Roset03], Biztalk [Bizt03], and ebXML 

[ebXM03]). A long list of the related standards and products can be found in 

[OASI03]. The main goal of interorganizational workflow management systems is to 

support B2B commerce, and they must provide all of the following functions [Medj03, 

DHL01]: 

 

1. A language model and the associated mechanism for specifying a common 

business process. 



2. A mechanism for an organization to publish its abilities in participating in specific 

roles of a common business process. 

3. A mechanism for an organization to interact with another for collaboratively 

executing a common business process. 

4. A common format for documents to be exchanged between organizations. 

 

Early efforts proposed diverse ways for addressing the above issues, whereas more 

recent work has tended to adopt XML and Web services in the implementation of 

these requirements. As such, documents to be exchanged between organizations must 

be specified in XML according to some common catalog, organizations must publish 

their services and interact with peer organizations via Web services, and the common 

business process is specified using some Web service composition language (such as 

those proposed by WSFL [Leym01], XLANG [That01], and BPEL4WS [Curb03]).  

 

The present work differs significantly from the huge body of previous work on 

interorganizational workflows: others have aimed to automate an interorganizational 

business process, whereas our aim was to facilitate a mobile user in handling personal 

business across several organizations that require physical interactions from 

customers. Therefore, we do not require that a task (or a subprocess) is instantiated as 

a Web service from another organization. Instead, Web services are mainly used to 

publish a task, to track a task’s execution status, and to download a process template. 

This approach dramatically reduces the administration effort, preserves autonomy, and 

still allows for interoperations between organizations. 

 

One project that appears similar to ours is ServiceFlow, which proposes focusing on 

the customer-centered aspect on workflow management [KW01a, KW01b, KW02, 



WK02]. ServiceFlow introduces a general concept for supporting interrelated, 

personalized, and localized services performed across different organizational units or 

provider firms. As in our work, a process is mainly designed to handle a personal 

business, such as a patient’s medical treatment. A process within ServiceFlow is 

modeled as a series of service points (denoted as a list), each including a UML 

specification of participants carrying out certain tasks/activities as well as the pre- and 

postconditions required for process execution. However, although ServiceFlow 

proposes the consideration of customer-related factors, the procedures for publishing, 

instantiating, and tracking tasks are basically the same as those proposed by the 

conventional B2B workflows described earlier in this document.  

 

8 Conclusions 

In this paper we have exploited the user-centered aspect of interorganizational 

workflows and proposed the concept of personal processes. A personal process is 

defined as a coordination of personal tasks, each requiring a joint effort between a 

user and an enacting organization so as to achieve a personal goal. We have identified 

the unique requirements for managing personal processes. To satisfy these 

requirements, we formally defined a personal process model, a correctness criterion, 

and the query expressions. A lightweight architecture for systematically supporting 

the management of personal processes has also been presented. We have also detailed 

our implementation of a prototype system that includes a PWFMS running on a Palm 

PDA and two subsystems running on fixed networks.   

 

One function that is particularly useful in managing personal processes is the alert (or 

recommendation) function. The alert function of a PWFMS advises the user of the 



correct things to do at a particular time and place. This function was left out in our 

current prototype because location servers that are capable of providing accurate 

location information about mobile users in a wide range of regions (e.g., both indoors 

and outdoors) are not widely available. However, with the current rapid developments 

in wireless technologies, accurate and inexpensive location services will soon become 

available. Our future work includes the exploration of issues and solutions related to 

the design of the alert function. 

 

References 

[Aals99] W. M. P. Van Der Aalst, “Process-oriented Architectures for Electronic 

Commerce and Interorganizational Workflow,” Information Systems, 24(8), 

1999, pp. 639–671. 

[BPMI03] Business Process Management Initiative, http://www.bpmi.org, September 

2003. 

[Bizt03] Biztalk, http://www.microsoft.com/biztalk/, September 2003. 

[BM77] J. L. Bell and M. Machover, A Course in Mathematical Logic, 

North-Holland Publishing Company, 1977. 

[Curb03] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. 

Weerawarana, “Business Process Execution Language for Web Services 

V1.1,” http://dev2dev.bea.com/techtrack/BPEL4WS.jsp, September  

2003.  

[DHL01] U. Dayal, M. Hsu, and R. Ladin, “Business Process Coordination: State of 

the Art, Trends and Open Issues,” Proceedings of the 27th Very Large 

Databases Conference (VLDB 2001), Rome, Italy, 2001, pp. 3–13. 

[ebXM03] ebXML, http://www.ebxml.org/, September 2003. 

http://www.microsoft.com/biztalk/�
http://www.ebxml.org/�


[EM99] A. Eisenberg, and J. Melton, “SQL:1999, Formally Known as SQL3,” 

ACM SIGMOD Record, 28(1), 1999, pp.131–138. 

[Guet00] R. H. Gueting, M. H. Boehlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, 

M. S., and M. Vazirgiannis, “A foundation for representing and querying 

moving objects,” ACM Transactions on Database Systems, 25(1), 2000, 

pp.1-42. 

[HC03] S.-Y. Hwang, Y.-F. Chen, “Personal Processes: Modeling and 

Management,” 4’th Int’l. Conf. on Mobile Data Management (MDM03), 

Melbourne, Australia, Jan. 2003. LNCS2574, Springer Verlag. 

[KW01a] R. Klischewski, I. Wetzel, “Modeling Serviceflow,” In: Godlevsky, M., 

Mayr, H. (ed.): Information Systems Technology and its Applications. 

Proceedings ISTA 2001. Bonn: German Informatics Society, 2001, 

pp.261-272. 

[KW01b] R. Klischewski, I. Wetzel, “Serviceflow Management for Health Provider 

Networks,” in: Information Age Economy. Proceedings 5th International 

Conference Wirtschaftsinformatik (Business Information Systems), 

Heidelberg, 2001, pp.161-174. 

[KW02] R. Klischewski, I. Wetzel, “Serviceflow Management: Caring for the 

Citizen’s Concern in Designing E-Government Transaction Processes,” 

Proceedings Hawaii International Conference on System Sciences 

(HICSS-35), IEEE, 2002. 

[LASS00] A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler, “The WISE Approach 

to Electronic Commerce,” Journal of Computer System Science and 

Engineering, 15(5), 2000, pp. 343–355. 

http://swt-www.informatik.uni-hamburg.de/publications/details.php?id=181�
http://swt-www.informatik.uni-hamburg.de/publications/details.php?id=181�


[Leym01] F. Leymann, “Web Services Flow Language (WSFL 

1.0),” http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.p

df, September 2003. 

[Lotu03] IBM Lotus Workflow, http://www.lotus.com/products/domworkflow.nsf, 

September 2003. 

[Medj03] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K. 

Elmagarmid, “Business-to-business Interactions: Issues and Enabling 

Technologies,” The VLDB Journal, 12, 2003, pp. 59–85. 

[OASI03] OASIS, “Business Process Management and 

Choreography,” http://xml.coverpages.org/bpm.html, September 2003. 

[Peop03] PeopleSoft Inc., http://www.peoplesoft.com, September 2003. 

[Roset03] RosettaNet, http://www.rosettanet.org, September 2003. 

[SAP03] SAP Inc., http://www.sap.com, September 2003. 

[SBDM02] M. Shen, B. Benatallah, M. Dumas, and E. Mak, “SELF-SERV: A 

Platform for Rapid Composition of Web Services in a Peer-peer 

Environment,” Proceedings of the International Conference on Very Large 

Databases, Hong Kong, China, 2002, pp. 1051–1054. 

[Schu00] C. Schuster, D. Baker, A. Cichocki, D. Georgakopoulos, and M. 

Rusinkiewicz, “The Collaboration Management Infrastructure,” 

Proceedings of the IEEE International Conference on Data Engineering, 

San Diego, Calif., USA, 2000, pp. 677–678. 

http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf�
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf�
http://www.lotus.com/products/domworkflow.nsf�
http://xml.coverpages.org/bpm.html�
http://www.peoplesoft.com/�
http://www.rosettanet.org/�
http://www.sap.com/�


[That01] S. Thatte, “XLANG: Web Services for Business Process 

Design,” http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.ht

m, September 2003. 

[Ulti03] Ultimus Workflow Suite, http://www.ultimus.com/ultintro.htm, September 

2003. 

[Weis00] J. Weissenfels, M. Gillmann, O. Roth, G. Shegalov, and W. Wonner, “The 

Mentor-lite Prototype: a Lightweight Workflow Management System,” 

Proceedings of the IEEE International Conference on Data Engineering, 

San Diego, Calif., USA, 2000, pp. 685–686. 

[WfXM01] Workflow Management Coalition (WfMC), “Wf-XML 

Binding,” http://www.wfmc.org/standards/docs/Wf-XML-11.pdf, 

September 2003. 

[WK02] I. Wetzel, R. Klischewski, “Serviceflow beyond Workflow? Concepts and 

Architectures for Supporting Inter-Organizational Service Processes,” In 

Proc. of 14th CAiSE (International Conference on Advanced Information 

Systems Engineering), Springer, Berlin, 2002, pp.500-515. 

 

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm�
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm�
http://www.ultimus.com/ultintro.htm�
http://www.wfmc.org/standards/docs/Wf-XML-11.pdf�


Appendix  Screenshots of the prototype system 

 

Figure A-1: Template provider – list processes 

  
Figure A-2: Template provider – choose providers 



 

Figure A-3: Template provider – manage a personal process 



 

Figure A-4: Template provider – add a task 



 

Figure A-5: Template provider – modify a task 

 



 
Figure A-6: Template provider – check correctness 

 

 

Figure A-7: Template provider – personal process diagram 

 

 

Figure A-8: Template provider – process a transfer 

 

Node : task 
Line  : Data 



    

(a)                          (b) 

Figure A-9: (a) PWFMS menu; (b) PWFMS process list 

 
 

    
(a)                          (b) 

Figure A-10: (a) PWFMS response message to an online task status check; (b) 

PWFMS task list 

 



    

(a)                          (b) 

Figure A-11: (a) PWFMS getTemplate function; (b) PWFMS task functions  

 

  
(a)                          (b) 

Figure A-12: (a) PWFMS list data; (b) PWFMS query date 

 



   

Figure A-13: PWFMS functions for manipulating data 


	Managing Personal Processes in the Support of Interorganizational Workflows
	Abstract
	1 Introduction
	2 The personal process model
	2.1 Task status
	2.2 Task output thread
	2.3 Metaschema of personal processes

	3 Constraints on personal processes
	4 Querying a personal process
	4.1 Predicates definition
	4.2 Sample queries

	5 The system architecture
	5.1 Components and interfaces
	5.2 Workflow behavior of a personal process

	6 The prototype
	6.1 The template provider system
	6.2 Personal workflow management system

	7 Related work
	8 Conclusions
	References
	Appendix  Screenshots of the prototype system


